KnigaRead.com/

Неизвестен Автор - Мозг (сборник)

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн неизвестен Автор, "Мозг (сборник)" бесплатно, без регистрации.
Перейти на страницу:

Для большинства из этих физиологически установленных систем (кроме зрительных) до настоящего времени неизвестно анатомических коррелятов. С другой стороны, в последние годы несколько анатомов, в особенности Э. Джонс (Е. Jones) из Медицинской школы Вашингтонского университета, а также Наута (Nauta) и П. Голдмен (P. Goldmen) из Массачусетского технологического института показали, что пути из одной зоны коры в другую (например, из соматосенсорной зоны одной стороны в соответствующую зону на другой стороне) оканчиваются в участках, имеющих правильные чередования с периодом около миллиметра. Здесь колонки видны морфологически, но нет никакой идеи относительно их физиологической интерпретации. Ясно, однако, что тонкие периодические подразделения - действительно общая черта коры мозга. Таким образом, можно сказать, что первое наблюдение Маунткаслом такого свойства способствовало четвертому глубокому прозрению относительно организации коры.

Конечно, было бы неверно считать, что данное рассмотрение зрительной коры в какой-то степени исчерпывает предмет. Кора, по-видимому, имеет дело и с цветом, и с движением, и со стереоскопической глубиной, но в какой степени и каким образом - пока неясно. Из наших работ, относящихся к восприятию глубины, и из работ по цветовому зрению, выполненных С. Зеки (S. Zeki) из Лондонского университетского колледжа, можно заключить, что высшие кортикальные зрительные зоны, в которые первичная кора проецируется непосредственно или обходным путем, могут быть специализированы для обработки соответствующих параметров, но мы еще очень далеки от понимания того, в чем заключается эта обработка.

Что делается за пределами первичной зрительной коры и как информация об ориентации используется на последующих стадиях? Нужно ли думать, что в конечном счете обнаружится клетка, специфически реагирующая лишь на некоторый очень определенный объект? (Обычно в качестве такого объекта выбирают чью-то бабушку по причинам, которые мы уяснить не можем.) Наш ответ состоит в том, что мы сомневаемся в существовании таких клеток, но мы не можем предложить взамен ничего хорошего. К счастью, широкие спекуляции на тему о том, каким образом мозг мог бы работать, это не единственный путь, открытый исследователями. Изучать мозг - это более увлекательное и, кажется, более полезное занятие.

Было время, и не так давно, когда, глядя на миллионы нейронов в различных слоях коры, можно было сомневаться в том, что у кого-нибудь когда-нибудь может возникнуть хоть какая-нибудь идея относительно их функции. Работают ли все они параллельно, как клетки печени или почки, выполняя свои функции сообща, или каждый из них делает что-то свое, особое? Для зрительной коры ответ представляется теперь в общем плане известным: нейроны возбуждаются или тормозятся специфическими стимулами; группы нейронов действительно выполняют специальные преобразования. Если окажется возможным разгадать секреты нескольких подобных областей, будет резонно полагать, что и другие области со временем также раскроют свои тайны.

Э. ЭВАРТС

Механизмы головного мозга, управляющие движением

Как головной и спинной мозг управляют движениями тела? Мозг не только посылает команды мышцам, но и получает по обратной связи сигналы, которые помогают ему согласовывать эти команды

Одно из первых сведений, полученных более ста лет назад, об управлении движением со стороны головного мозга состояло в том, что движения тела могут быть вызваны сигналами, приходящими в спинной мозг из специальной области головного мозга - моторной зоны коры больших полушарий. Движения имеют широкий диапазон - от мышечных координации, требуемых для грубой ручной работы или быстрого перемещения всего тела, до тонких движений пальцев при хирургических операциях, выполняемых под микроскопом.

Три белые "тени" на микрофотографии представляют собой метки, специально созданные, чтобы облегчить исследование важного аспекта связи между головным мозгом и движением, а именно химизма мышечного сокращения, следующего за импульсацией мотонейрона. На микрофотографии показан поперечный срез одной из мышц конечности кошки. "Тени" образованы отдельными мышечными волокнами в одной двигательной единице. Предварительное изучение этой единицы показало, что она относится к "медленной" мышце, т. е. такого рода мышце, которая развивает небольшую силу, но функционирует не утомляясь. Эти три волокна превратились в метки в результате длительной стимуляции мотонейрона, который управляет их сокращениями, что привело к истощению запаса гликогена - особой формы хранения глюкозы, которая служит источником энергии для работы мышцы. При окрашивании среза все мышечные волокна с нормальным содержанием гликогена стали розовыми. На следующих рисунках показаны другие срезы той же мышцы с теми же тремя метками. Они были окрашены, чтобы определить связь между химическими и механическими свойствами мышечных волокон. Микрофотографии получены Р. Берком (R. Burke) и П. Церисом (P. Tsairis) в Национальных институтах здравоохранения.

Эта выходная активность моторной коры сама является результатом сигналов, поступающих из других пунктов - не только от других областей коры, например тактильной, но и от подкорковых структур мозжечка и базальных ганглиев, которые посылают сигналы в моторную кору еще через одно подкорковое образование - таламус. Основная часть современных исследований мозговых механизмов движения направлена на лучшее понимание того, как сигналы, приходящие от различных корковых и подкорковых структур, объединяются в контроле над конечными выходами из моторной коры к спинному мозгу и оттуда к мышцам. В настоящей статье будет рассмотрен современный уровень наших знаний, которые имеют важное значение по двум причинам. Во-первых, они связаны с фундаментальными проблемами общей организации головного мозга. Во-вторых, они имеют отношение к лечению и, возможно, к предупреждению таких неврологических заболеваний, как болезнь Паркинсона и хорея Гентингтона (две болезни из числа тех, при которых затронуты базальные ганглии), различные проявления инсульта, рассеянного склероза, а также многих других нарушений, возникающих при повреждении мозжечка.

Каковы элементарные условия для выполнения движения? Первое - это мышца, второе - это сигнализирующая система, которая вызывает упорядоченное сокращение мышцы. Если начать с мышц, то надо сказать, что не все они работают одинаково. Рассмотрим мышцы глаза и руки у человека. Глазные мышцы должны работать с высокой скоростью и большой точностью, быстро ориентируя глазное яблоко в пределах нескольких дуговых минут. В то же время глазной мышце не приходится справляться с такими внешними задачами, как поднимание груза. Тонкое управление, требуемое при движении глаза, требует высокого иннервационного индекса - отношения числа нейронов, аксоны которых оканчиваются на наружной мембране мышечных клеток, к числу мышечных клеток.

Для глазной мышцы иннервационный индекс составляет 1:3; это значит, что аксонные окончания одного мотонейрона выделяют свой медиатор не более чем на три отдельные мышечные клетки. (Мотонейрон - это такой нейрон, тело которого лежит в спинном мозгу, а аксон оканчивается на мембране мышечной клетки.) По-иному обстоит дело с мышцами руки: аксонные окончания одного мотонейрона, например иннервирующего бицепс, могут действовать своим медиатором на сотни мышечных волокон, и поэтому у такой мышцы иннервационный индекс составляет всего 1:100. В результате действие одной двигательной единицы мышцы конечности - одно быстрое сокращение (twitch), возникающее под влиянием одного импульса, вызывающего выделение медиатора из окончаний одного мотонейрона, - соответственно оказывается грубым.

Двигательные единицы мышц различаются также по тому, насколько они подвержены утомлению. На одном конце шкалы лежат двигательные единицы медленного сокращения, способные длительно функционировать без утомления. Такие единицы могут быть активными в течение длительного времени, но развивают сравнительно небольшое мышечное напряжение. На другом конце шкалы находятся двигательные единицы быстрого сокращения; они могут создавать высокие пики мышечного напряжения, но быстро утомляются. Такие единицы обычно иннервируются мотонейронами с диаметром аксонов и скоростью проведения нервного импульса выше средних.

В одной и той же мышце содержатся волокна и быстрых и медленных двигательных единиц. В 1968 г. шведские исследователи Э. Кугельберг (Е. Kugelberg) и Л. Эдстром (L. Edstrom) нашли способ определять, какие отдельные моторные волокна относятся к данной двигательной единице. Длительной стимуляцией аксона одного мотонейрона эти исследователи вызывали продолжительное сокращение мышечных волокон одной двигательной единицы. Сокращение приводило к истощению в отдельных мышечных волокнах запаса гликогена, который является источником энергии. При специальном окрашивании ткани на гликоген волокна истощенной двигательной единицы принимали вид белых "теней", рассеянных среди розовых волокон с нормальным запасом гликогена.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*