БСЭ БСЭ - Большая Советская Энциклопедия (ИМ)
При импульсном режиме электронные устройства подвергаются воздействию электрических сигналов не непрерывно (в течение всего времени работы устройства), а прерывисто. При этом прерывистая структура импульсных сигналов составляет принципиальную основу полезных функций устройства, работающего в импульсном режиме. Импульсные сигналы различаются по амплитуде и длительности импульсов, частоте их следования, а также по относит. взаимному расположению в серии. На рис. 1 изображен импульсный сигнал в виде серии из 3 импульсов, сгруппированных согласно некоторому условному коду, определяемому, в частности, расстановкой импульсов в серии. Импульсные сигналы могут иметь более сложную структуру, зависящую от вида модуляции и формы импульса. Некоторые электрические колебания сложной формы (рис. 2), в отличие от синусоидальных, имеют разрывной характер; им свойственны весьма широкий частотный спектр и наличие характерных точек, точнее участков весьма малой временной протяжённости, в которых скорость изменения колебательного процесса претерпевает резкие скачки (разрывы). Эти свойства сближают колебания сложной формы с типичными импульсными процессами. В И. т. часто применяют импульсные сигналы с частотным заполнением от десятков гц до десятков Ггц.
При импульсном режиме работы может быть достигнута высокая степень концентрации энергии во времени; так, например, в мощных импульсных модуляторах в течение длительного промежутка времени между импульсами происходит относительно медленное запасание энергии в накопительных элементах, затем в течение отрезка времени, протяжённость которого значительно меньше периода накопления, запасённая энергия выделяется в нагрузочном элементе. В результате удаётся получать электрические импульсы, мощность которых значительно превосходит номинальную мощность источников питания, что имеет существенное значение при конструировании радиоэлектронной аппаратуры; например, мощность в радиоимпульсе, излучаемом радиолокационной станцией, достигает десятков Мвт и более. Благодаря резким перепадам амплитуды электрических импульсов возможна весьма точная фиксация времени воздействия импульсных сигналов, а также чёткое разделение двух возможных состояний электронной схемы: «есть ток» — «нет тока» («да» — «нет»). Импульсные электронные устройства, выполняющие функции бесконтактных электронных ключей, способны за 10-6 и даже 10-9 сек переключать электрические цепи.
С понятием «импульс» обычно связывается представление о малой его длительности. Однако кратковременность импульса — понятие относительное: в зависимости от области использования длительность импульса может изменяться в значительных пределах. В автоматике, например, оперируют с импульсами длительностью порядка 0,01 — 1 сек, в импульсной радиосвязи — 10-6 сек, в физике быстрых частиц — 10-9 сек. Однако даже в одной и той же области техники часто применяют импульсы с различной длительностью и частотой следования. Так, например, в радиолокации работают с электрическими импульсами длительностью от 10-3 до 10-9 сек с частотой повторения от единиц гц до 104 гц. В И. т. проявляется тенденция к укорочению импульсов и увеличению частоты их следования, стремлением повысить эффективность электронных устройств, разрешающую способность (например, радиолокаторов) или быстродействие (в ЭВМ). Иногда более важно отношение длительности паузы между импульсами к длительности импульса (скважность), которое в цифровой автоматике обычно не превышает 10, в радиосвязи — порядка 10 — 100, в радиолокации колеблется от 100 до 10000. При воздействии импульсов электрического тока или напряжения на цепь, обладающую свойством запасать энергию, возникают переходные процессы, значение которых в И. т. весьма велико. Явления, связанные с переходными процессами, часто используют в работе импульсных устройств, но в ряде случаев они оказывают вредное влияние и приводят к схемному и конструктивному усложнению устройств. Поэтому анализу переходных процессов в И. т. уделяется особенно большое внимание. Специфичность методов и средств формирования, преобразования, измерения и регистрации импульсных сигналов и анализа процессов в импульсных устройствах обусловлены главным образом их нестационарностью.
Для получения импульсов различной формы, функционального преобразования импульсных сигналов, селекции импульсов по тому или иному признаку, а также для выполнения логических операций над ними служат типовые импульсные логические схемы и устройства. К ним относятся линейные устройства формирования импульсов, преобразования их формы, амплитуды, полярности и временного положения (формирующие линии, дифференцирующие и интегрирующие цепи, импульсные трансформаторы и усилители, электромагнитные и ультразвуковые линии задержки); нелинейные устройства преобразования импульсов и переключения цепей (ограничители, фиксаторы уровня, пик-трансформаторы, магнитные генераторы импульсов, электронные ключи и др.); регенеративные спусковые схемы, и генераторы импульсов (пересчётные схемы, триггеры, мультивибраторы, блокинг-генераторы); импульсные делители частоты повторения; электронные генераторы линейно-изменяющегося тока и напряжения (в т.ч. фантастроны, санатроны и др.); селекторы импульсов; логич. схемы и спец. устройства обработки импульсных сигналов (кодирующие и декодирующие устройства, дешифраторы, регистры, матрицы, элементы памяти ЭВМ и др.).
Импульсные методы работы широко используются в телевидении, где сигналы изображения и синхронизации — импульсные; с помощью радиоимпульсов удалось решить такую важную задачу, как измерение расстояний, что обусловило развитие импульсной радиолокации и радионавигации (в системах обнаружения, в радиовысотомерах, в навигации кораблей и самолётов). Импульсное кодирование сообщений, основанное на различных принципах импульсной модуляции, позволяет осуществлять радиосвязь с высокой помехозащищенностью, а также многоканальную радиосвязь (с разделением каналов по времени) в телеметрии. Перспективно использование импульсных режимов в радиоуправлении на большом расстоянии, например искусственными спутниками Земли, космическими кораблями, луноходами.
Импульсные методы имеют существенное значение в информационно-измерительной технике, используемой, в частности, в космической электронной аппаратуре и при исследованиях в области физики быстрых частиц. Методы и средства И. т. лежат в основе работы современных электронных ЦВМ, разнообразных цифровых автоматов, применяемых не только как средство автоматизации вычислительного процесса, но и для решения различных логических задач при автоматической обработке информации. Для этого производятся соответствующие преобразования над импульсными сигналами, несущими информацию (обычно в сопровождении помех), и с помощью логических схем и устройств селекции импульсов выполняются логические операции над импульсами. Т. о. выделяют, анализируют, распознают и регистрируют полезную информацию, содержащуюся в обрабатываемых импульсах. Исключительно широко применяются методы И. т. в радиоизмерительных устройствах (частотомерах, осциллографах, анализаторах спектра, измерителях временных интервалов и др.).
Первое практическое применение импульсных режимов работы электрических устройств связано с изобретением русским учёным П. Л. Шиллингом электромагнитного телеграфа (1832), усовершенствованного русским академиком Б. С. Якоби и американским изобретателем С. Морзе. Изобретатель радио А. С. Попов для генерации радиоволн применил импульсный искровой передатчик (1895). В 1907 русский учёный Л. И. Мандельштам выдвинул идею использования изменяющихся по известному закону электрических величин для создания точного масштаба времени, которая была реализована в устройстве временной развёртки осциллографа; так был открыт способ исследования кратковременных импульсных процессов. В том же 1907 русский учёный Б. Л. Розинг впервые в мире использовал электроннолучевую трубку для приёма сигналов изображения. Этим было положено начало телевидению. В 1918 советский учёный М. А. Бонч-Бруевич разработал и исследовал «катодное реле», позволяющее скачком изменять силу тока электронных ламп и напряжение на их электродах. В 1919 в журнале «Annales de Physique» американские учёные Х. Абрагам и Е. Блох опубликовали статью с описанием др. подобного устройства — мультивибратора; тогда же американские учёные В. Иклс и Ф. Джордан разработали схему триггера; мультивибратор и триггер широко используются в современной И. т. В конце 20-х гг. в связи с распространением коротковолновой радиосвязи возникла необходимость измерения высоты ионизированных слоев атмосферы. Первая в СССР установка для импульсного измерения расстояний была создана в 1932 под рук. М. А. Бонч-Бруевича. Принципы работы этой установки впоследствии нашли применение в импульсной радиолокации. Быстрое развитие И. т. стимулировалось совершенствованием радиосвязи, телевидения, радиолокации, радионавигации, телеуправления, телеметрии, вычислительной техники. Этому способствовало также решение ряда теоретич. проблем, в том числе теории нелинейных и разрывных колебаний, разработанной советскими радиофизиками А. А. Андроновым, А. А. Виттом и С. Э. Хайкиным. Исключительно важно для совр. состояния и дальнейшего развития И. т. совершенствование полупроводниковой электроники и интегральных схем.