Кевин Фонг - Extremes. На пределе
Для большинства космонавтов и астронавтов экспедиция в космос длится менее двух недель. Ухудшение здоровья и нарушение различных функций у тех, кто оставался в космосе от трех до шести недель, значительны и варьируют от человека к человеку.
Разработаны разные меры, позволяющие справиться с нежелательными последствиями более длительного пребывания в космосе. Это лекарственные препараты, специальные диеты, режимы усиленных тренировок. Но хотя все они применяются и в той или иной степени помогают справиться с последствиями полета, ни одно из этих средств не является панацеей.
По этой причине изобретатели то и дело возвращаются к концепции искусственной гравитации. Идея эта не нова. Конструкторы первых ракет понимали, что команды их кораблей будут испытывать невесомость и что это вызовет проблемы, хотя всех возможных последствий они предсказать не могли.
В 1923 году Герман Оберт предложил решение: ракета с прикрепленным к ней противовесом должна вращаться вокруг общего центра тяжести, создавая для экипажа искусственную гравитационную нагрузку. Это та самая нагрузка, которую мы испытываем, катаясь на карусели, — центробежная сила, прижимающая нас к дверце автомобиля на резком повороте.
Что ж, как будто все неплохо. Но проблема тут не в физике, а в инженерном решении. Для подобного аппарата серьезнейшим ограничением является наличие на борту живых людей с их биологическими потребностями.
Сила искусственного тяготения, вызываемая вращением корабля, зависит от радиуса корабля и скорости его вращения. Для того чтобы гравитационная сила оказалась достаточной, корабль должен быть либо маленьким и вращаться очень быстро, либо очень большим — и в этом случае ему позволительно кувыркаться медленнее.
Все люди по-разному переносят катание на каруселях и американских горках: одни готовы снова и снова вращаться с головокружительной скоростью, при этом ничуть не страдая, других укачивает при одном взгляде на этот аттракцион. Здесь опять же все дело в рецепторах внутреннего уха: именно они реагируют на ускорение вращения, пытаясь разобраться, что происходит, и если разобраться не могут, выражают свое несогласие через рвотный центр в мозгу. Однако если скорость вращения остается достаточно медленной, до четырех оборотов в минуту или меньше, со временем к этому движению способен привыкнуть любой.
Определившись с этим требованием, мы можем вычислить радиус вращения, необходимый для создания силы тяжести, равной земной. Диаметр такого корабля должен составлять 125 метров — то есть примерно как лондонское колесо обозрения. Вообразите махину такого размера, да еще вращающуюся со скоростью четыре оборота в минуту, попытайтесь оценить, чего бы стоило построить эту громаду, а потом вывести ее на орбиту.
В НАСА это не просто вообразили. В 1990-е годы в Центре космических исследований имени Джонсона группа инженеров во главе с Кентом Джустеном разработала примерный проект корабля с искусственной гравитацией, который мог бы реально существовать и работать. Они вернулись к оригинальной идее Германа Оберта об общем вращении ракеты с экипажем и соединенном с ней противовесе. В проекте Джустена модуль и его противовес остроумно предложено разделить ультралегкой жидкокристаллической конструкцией. Во время старта с Земли эту конструкцию можно сохранять в сжатом виде, а развернуть только после выхода корабля на орбиту. Далее сооружение будет вращаться до самого Марса. Экипажу в нем отводится жилое помещение величиной с дом на четыре спальни, условия жизни в котором, включая гравитационную нагрузку, приближены к земным.
На сегодняшний день разработки Джустена по искусственной гравитации представляются наиболее зрелыми и технически обоснованными. Тем не менее предстоит решить еще немало серьезных проблем, прежде чем создание подобного летательного аппарата станет действительно возможным. Ибо эта концепция полностью меняет наши представления о космическом полете. Возможно, именно этим отчасти объясняется скепсис научного сообщества в отношении идеи Джустена.
О полетах на Марс написаны сотни работ, и почти во всех предлагаются небольшие, достаточно простые летательные аппараты — вроде тех, что доставили человека на Луну. Потому что есть способ создать искусственную гравитацию и в подобном корабле, даже если невозможно заставить его вращаться.
В повседневной жизни мы не постоянно испытываем одинаковую гравитационную нагрузку. Поднимаясь и спускаясь по лестницам, мы нагружаем суставы, так что некоторые отделы скелета подвергаются нагрузке в три-четыре раза больше, чем в покое. Когда мы ложимся спать, продольная ось нашего тела оказывается практически перпендикулярна силе тяготения; в это время скелет, сердечно-сосудистая система и антигравитационные мускулы не нагружены. Такое «как бы невесомое» состояние действительно довольно близко к невесомости в космическом полете. И в самом деле, желая воспроизвести некоторые воздействия микрогравитации, исследователи зачастую просто укладывают испытуемых.
Итак, на Земле тяготение наиболее oщутимо воздействует на нас лишь временами — когда мы стоим и передвигаемся в течение дня. Но даже и в это время нагрузка не постоянна. С пониманием этого обстоятельства пришла оригинальная идея: прописывать гравитацию как лекарство, предоставляя ее на короткий срок, но в больших дозах. Почему бы не применять для нейтрализации эффектов невесомости центрифугу короткого радиуса? Зачем строить звездолет диаметром с лондонское колесо обозрения и медленно его вращать, если можно создать компактное устройство, погрузить его на борт корабля (достаточно скромного по размеру) и крутить его там на высокой скорости?
Арифметический подсчет показывает, что центрифуга радиусом три метра способна делать сорок оборотов в минуту, обеспечивая нагрузку около 3 g на конце радиуса. Такого оригинального режима нагрузок может тем не менее оказаться вполне достаточно для того, чтобы защитить организм от невесомости. Еще больше обнадеживает то, что нагрузки можно давать небольшими дозами. Исходя из этого НАСА и построило свою модель.
***
Дело происходит в Галвестоне (штат Техас), в лаборатории НАСА. Потолок вращается у меня над головой со скоростью 40 оборотов в минуту. Я стараюсь держать голову прямо и не сводить глаз с закрепленного вверху, в метре от лица, экрана.
Глубоко в недрах моего внутреннего уха имеются крохотные клеточки с тончайшими отростками-волосками, погруженными в густую студенистую массу. Они стоят в ней вертикально, словно травинки в тарелке с желе. Это часть моего вестибулярного аппарата, а существует она для того, чтобы реагировать на ускорение в окружающем меня мире. Чем сильнее выгибается желе, тем больше гнутся травинки, активируя чувствительные волосковые клетки. В настоящий момент они изо всех сил пытаются понять, что же со мной происходит.
Волосковые клетки моих полукружных каналов, органы, реагирующие на вращательное движение, негодуют, то и дело активируются, поскольку тело мое непрерывно вращается. Мозг уже давно устал выслушивать их и решил больше на эти сигналы не реагировать, после чего мне стало почти комфортно. Но такое состояние нестабильно. Между тем, что я вижу, и тем, что я ощущаю, существует глубокое противоречие. Рвотному центру моего мозга — соединенному напрямую с той самой хитрой структурой, реагирующей на ускорение, — пока что удается сохранять спокойствие. Чтобы так было и дальше, я должен стараться держать голову ровно и не менять ее положения. Если сваляю дурака и начну озираться, меня тут же стошнит.
На голове у меня шлем с наушниками и включенным микрофоном. Сотрудник в пультовой — он следит за изображением на мониторах — спрашивает, все ли у меня в порядке. Отвечаю, что пока все нормально. Другой голос из пультовой задает еще несколько вопросов, а потом просит, если это меня не затруднит, повернуть голову и взглянуть на циферблат справа от меня — он его что-то беспокоит. Отвечаю, что на такие подначки я не ведусь. Из микрофона доносится сдавленный смешок.
Я здесь уже тридцать минут, осталось еще столько же. Я лежу на спине в экспериментальном устройстве — центрифуге, достаточно небольшой, чтобы можно было уместить ее в модуле корабля, совершающего полет на Марс.
На первый взгляд она напоминает пыточное орудие. От оси отходят две планки, на каждой из которых можно лежать. Чтобы лежащий не упал, предусмотрены системы крепления, ремни и ошейники, а датчики и мониторы снимают информацию во время испытания. Вся эта штука может вращаться с головокружительной скоростью. Если бы ярмарочную карусель изобрел инквизитор Торквемада, она выглядела бы примерно так.
На этом устройстве исследуют возможности человеческого организма, чтобы выяснить, как он реагирует на подобные нагрузки. К груди мне приклеили электроды для снятия электрокардиограммы, на руке периодически надувается резиновая манжетка для измерения давления, в вену введен зонд для замера кислорода в крови.