В.В.Новицкий - Патофизиология. Том 2
новорожденных и наследственных микросфероцитозе, стоматоцитозе, а также (в слабой
степени выраженности) при токсикозах, бронхопневмониях, гемобластозах, циррозах
печени и др. Увеличение осмотической резистентности эритроцитов имеет место при
механической желтухе, в некоторых случаях полицитемии и железодефицитной анемии, а
также при талассемии, гемоглобинозе S и после массивных кровопотерь.
14.4.5. Изменения количественного и качественного состава гемоглобина
Гемоглобин - основной компонент эритроцитов (составляет около 95% сухого остатка).
По химической природе гемоглобин относится к хромопротеидам и имеет в своем составе
белок (глобин) и комплексное соединение железа и протопорфирина IX (гем).
Различие аминокислотного состава полипептидных цепей глобина определяет
гетерогенность молекулы гемоглобина. В эритроцитах человека на разных этапах
развития в норме определяются 6 типов гемоглобина: эмбриональный (Gower 1, Gower 2,
Portland), фетальный (HbF), взрослый (НЬА1, НЬА2). Время появления гемоглобинов в
организме и их количественное соотношение представлено в табл. 14-17.
Таблица 14-17. Типы гемоглобина в онтогенезе человека (по А.В. Папаян, Л.Ю. Жуковой, 2001)
У взрослого
человека основную массу гемоглобина в эритроцитах составляет гемоглобин А
(гемоглобин взрослых): А1 и А2. Около 1-2% приходится на гемоглобин F. Увеличение
содержания HbF в крови отмечается при гетерозиготном и гомозиготном вариантах β-
талассемии, у больных гемоглобинопатиями с дефектами β-цепей (HbSS, SС и др.), при
апластических анемиях, лейкозах. При α-талассемии могут обнаруживаться тетрамеры γ-
или β-цепей. Уровень HbА2 повышается (свыше 3,4%) также у носителей гена β-
талассемии, при мегалобластных анемиях, связанных с недостаточностью витамина В12 и
фолиевой кислоты. Снижение уровня HbА2 характерно для α-талассемии, железодефицитной
и сидеробластной анемий.
Мутации в генах, ответственных за синтез гемоглобина, сопровождаются образованием
аномальных гемоглобинов, что характерно, в частности, для серповидно-клеточной
анемии (HbS), гомозиготных гемоглобинопатий (HbСС, HbEE, HbDD и др.).
Гемоглобин определяет цвет крови. В крови гемоглобин существует в двух основных
формах: оксигемоглобин (HbO2), придающий артериальной крови ярко-красный цвет, и
дезоксигемоглобин (восстановленный гемоглобин, HbH), обусловливающий
темнокрасную с синеватым оттенком окраску крови. Некоторые патологические формы
гемоглобина, неспособные к переносу кислорода к тканям, могут изменять цвет крови. К
ним относятся метгемоглобин (гемиглобин, HbMet) и сульфгемоглобин (SHb), образующиеся в результате токсического действия различных химических веществ
(нитраты и нитриты, анилин, бензол, пиридин и др.). Их физиологический уровень в крови
не превышает 1%. Присутствие в крови HbMet, SHb свыше 15% придает крови
коричневый цвет («шоколадная кровь»). В противоположность HbMet и SHb,
карбоксигемоглобин (HbCO), формирующийся при отравлении угарным газом (СО) и
карбонилами металлов (Ni(CO)4; Fe(CO)5), имеет яркий вишнево-красный цвет, и его
присутствие нельзя ви-
зуально определить по цвету крови. Для определения содержания СО в крови проводятся
спектрофотометрический анализ крови, а также цветовые химические пробы с
формалином, дистиллированной водой, меняющими ярко-красный цвет СО-содержащей
крови на малиновый, или реакция с 50% раствором КОН, придающим крови в
присутствии СО коричневато-красный оттенок.
14.4.6. Активация протеолитических систем плазмы крови
К протеолитическим системам плазмы крови относятся системы комплемента, калликреин-
кининовая, а также фибринолитическая и свертывания крови (подробнее см. ниже раздел 14.5).
Все они играют определенную роль в физиологических процессах, а также участвуют в развитии
некоторых компенсаторных приспособительных реакций организма при действии на него
различных повреждающих факторов. И только в случаях, когда активация этих систем становится
неоптимальной, несоответствующей данным конкретным условиям, они превращаются в
патогенный фактор, обусловливающий развитие патологического процесса.
Калликреин-кининовая система. Активация этой системы приводит к образованию
кининов (рис. 14-13). Кинины - группа биологически активных нейровазоактивных
полипептидов. Наиболее изученными являются калликреин-кининовая система плазмы
крови и один из кининов - нонапептид брадикинин.
Физиологическое значение кининов основано на том, что они оказывают
непосредственное влияние на тонус и проницаемость
Рис. 14-13.
Активация калликреин-кининовой системы
сосудистой стенки, вызывая расширение прекапиллярных сосудов и увеличивая
проницаемость капилляров. В связи с этим кинины играют особую роль в органах,
периодически экскретирующих значительные количества жидкости (слюнные железы,
поджелудочная железа, потовые железы, желудок, кишечник).
Активация калликреин-кининовой системы происходит при действии на организм
различных повреждающих факторов, нарушающих целостность клеток и тканей и
приводящих, как правило, к активации фактора Хагемана. Это - травмы, токсины, облучение, накопление продуктов обмена веществ (например, кристаллов мочекислого
натрия), ишемия и др. Обычно в результате местных повреждающих воздействий
развивается воспаление. В его развитии определенную роль играет увеличение
содержания кининов, которые через изменение сосудистой реакции оказывают влияние на
интенсивность и характер воспаления, а также участвуют в формировании чувства боли.
Участвуют кинины и в развитии общих реакций организма на повреждение, причем
главным образом в формировании компенсаторно-приспособительных механизмов, и
только в случаях неадекватного их образования кинины могут стать патогенетическим
фактором различных расстройств.
Одно из таких компенсаторно-приспособительных влияний выявляется в генерализованном
действии на гемодинамику. При определенной концентрации кинины уменьшают
периферическое сопротивление сосудов малого и большого кругов кровообращения, что
увеличивает возврат крови к сердцу, а это, в свою очередь, увеличивает ударный объем обоих
желудочков сердца. Этот механизм может включаться при срочных или длительных адаптивных
реакциях организма в условиях действия на него различных факторов в виде эмоциональных или
физических нагрузок, тепла, гипоксии и др. При острой ишемии и инфаркте миокарда
компенсаторная роль увеличенного образования кининов сводится к расширению сосудов
миокарда и увеличению сердечного выброса, а также к развитию гипотензии, что облегчает
работу сердца и вызывает перераспределение крови. Неадекватность активации калликреин-
кининовой системы может стать патогенетическим фактором развития фатальной гипотензии, шока, болевого эффекта (кардиогенный шок).
Кинины принимают участие в развитии реакций при аллергической альтерации тканей.
Аллергическое воспаление, как и обычное, также сопровождается увеличением
концентрации кининов.
Их обнаруживают в довольно значительной концентрации в экссудате суставов при
ревматоидном артрите. Кроме того, увеличение их содержания в крови и спинно-мозговой
жидкости выявляется у собак с экспериментальным аллергическим энцефаломиелитом, в
миокарде и плазме крови кроликов с экспериментальным аллергическим миокардитом.
Установлено 10-15-кратное увеличение содержания кининов в крови больных людей во
время обострения бронхиальной астмы. Очевидно, кинины играют определенную роль в
развитии бронхоспазма, так как обладают способностью вызывать при определенной
концентрации спазм гладкой мускулатуры бронхиол. Сокращение гладкомышечных
клеток при взаимодействии кининов со специфическими мембранными рецепторами
приводит к активации кальциевых каналов и поступлению кальция в цитоплазму, где он и
стимулирует процесс сокращения. Это действие усиливается на фоне снижения
активности β-адренергических рецепторов, что, в частности, имеет место у больных
бронхиальной астмой. В такой ситуации концентрация кининов, недостаточная для
индукции бронхоспазма у здорового человека, способна вызвать его у больного,
имеющего пониженную активность β-адренергических рецепторов.
Активация калликреин-кининовой системы обнаружена при шоках различной этиологии, ревматизме, нефритах, артритах, карциноидном и демпинг-синдромах, атеросклерозе, гипертонической болезни и ряде других заболеваний. Соотношение защитного и патогенного