Рудольф Сворень - Шаг за шагом. Транзисторы
Если кубик сделан из идеального изолятора, в котором ни один электрон не покидает своей орбиты, то свободных зарядов в кубике не будет, а значит, не будет и тока в цепи. В цепи, куда включен реальный изолятор, ток обязательно появится, и чем хуже изоляционные свойства кубика, чем больше в нем электронов-нарушителей, тем больше этот ток.
Для начала включим в нашу испытательную цепь кубик из чистого каучука. Прибор покажет ток 1 пикоампер, то есть 0,000 000 000001 ампера. Легко подсчитать (нужно лишь вспомнить, что 1 а = 1 к/1 сек и 1 к = 6,3·1018 зарядов электрона), что при таком токе через поперечное сечение каучукового кубика ежесекундно проходит около 6 300 000 свободных электронов. Пусть вас не пугает эта цифра — она не так уж велика. Если бы мы испытывали кубик из проводника, например, из серебра, то ток в цепи достиг бы 1000 000 ампер, и каждую секунду через поперечное сечение серебряного кубика проходило бы 6 300 000 000 000 000 000 000 000 свободных электронов. В сравнении с этой астрономической цифрой число свободных электронов в каучуковом кубике, конечно, очень мало, и его смело можно считать изолятором.
Согласитесь, что не очень удобно каждый раз подсчитывать число свободных электронов, двигающихся в кубике проверяемого материала. Во всяком случае, это не принято — вместо того чтобы считать заряды, обычно вычисляют электрическое сопротивление кубика. Сделать это довольно просто. Мы знаем напряжение U, подведенное к кубику (1 в), знаем ток I, который по нему проходит, а значит, можем по одной из формул закона Ома (рис. 10) подсчитать и сопротивление R. Полученную величину называют удельным сопротивлением, подобно тому как удельным весом называют вес одного кубического сантиметра вещества. Величина удельного сопротивления — она измеряется в омах на сантиметр (ом·см) — показывает, какое сопротивление имеет сделанный из того или иного материала кубик с ребром в 1 см.
Удельное сопротивление четко характеризует изоляционные свойства материала, дает представление о наличии в нем свободных зарядов и, в частности, о «свободолюбии» (см. примечание на стр. 26) входящих в атомы электронов. Чем меньше свободных зарядов в том или ином веществе, тем хуже оно проводит электрический ток, или, если говорить об этом другими словами, тем больше удельное сопротивление вещества.
В арсенале природы имеются вещества с самым различным значением удельного сопротивления — от миллиарда миллиардов ом до миллиардных долей ома.
Еще недавно их делили на две группы, и условная граница между ними проходила где-то в районе удельного сопротивления 0,01 —100 ом·см. Все вещества с большим сопротивлением относили к изоляторам, а с меньшим — к проводникам.
В дальнейшем оказалось удобным выделить в имеющемся «наборе» некоторую промежуточную группу веществ с удельным сопротивлением от 0,0001 ом-см до 10 000 000 ом·см. Эти вещества и получили название полупроводников, хотя с таким же успехом их можно было назвать полуизоляторами.
Удельное сопротивление германия составляет примерно 50 ом·см, кремния — 1000 000 ом·см. Обе эти цифры относятся лишь к химически чистым веществам: даже небольшие доли примесей могут менять удельное сопротивление германия и кремния во много тысяч раз. Чтобы понять, как происходит такое резкое изменение электрических свойств полупроводника, нам придется несколько дополнить свои представления о возникновении и передвижении свободных электрических зарядов. Для этого мы сейчас мысленно нарисуем две очень упрощенные картинки, которые хотя и несколько искажают действительность, но зато позволяют в простом виде представить себе очень сложный процесс.
Для начала попробуем представить себе электрический ток в полупроводнике как упорядоченное движение одних только свободных электронов. Выглядит оно примерно так.
Под действием электрического напряжения электроны сравнительно медленно движутся в межатомном пространстве, не переставая при этом совершать свои (см. примечание на стр. 26) беспорядочные рывки в разные стороны. Сами же атомы неподвижны, так как они прочно связаны друг с другом в кристаллической решетке. Дав свободу некоторым своим электронам, пустив их путешествовать в межатомное пространство, атомы утратили тем самым былое электрическое равновесие и превратились в положительные ионы.
Кроме длинных, безостановочных путешествий, свободные электроны, создающие ток, могут совершать и короткие перебежки. Выскочит такой слабенький (с небольшим запасом энергии) электрон из своего атома и тут же попадет на пустующее место в соседнем атоме. В результате свой собственный атом превратится в положительный ион, а положительный ион, давший приют электрону-беглецу, станет нейтральным атомом.
Представьте себе, что электрон перебежал из атома в атом очень быстро и вы даже не успели заметить, когда все это произошло. Как в этом случае воспримете вы происшедшее событие? Вы увидите, как в твердом полупроводнике сдвинулся с места положительный ион (рис. 11).
Рис. 11. Переход электрона из одного атома в другой можно рассматривать как движение положительного заряда в противоположную сторону — движение дырки.
Положительный заряд, двигающийся в полупроводнике в результате коротких перебежек электронов, называют дыркой. Это весьма образное название. В результате коротких перебежек электронов действительно двигаются пустующие на внешней орбите места, двигаются дырки в электронных оболочках атомов. И несмотря на то что первопричиной всего, что происходит, является движение электронов, несмотря на то что при этом сами атомы в твердом теле своих мест не меняют (движение положительных и отрицательных ионов наблюдается лишь в жидких и газообразных веществах, где атомы и молекулы слабо связаны друг с другом и сравнительно легко передвигаются с места на место), мы все же будем считать, что в твердом полупроводнике имеются свободные положительные заряды — подвижные дырки.
Атомы-то ведь все одинаковые — не поймешь, кто кем был и кто кем стал, не поймешь, у кого чей электрон вращается на орбите. (Еще раз просим прочесть примечание на стр. 26, хотя читатель уже, по-видимому, сам знает, в каких случаях нужно обращаться к этому примечанию, и будет это делать без лишних напоминаний.) И поэтому, не пытаясь разобраться в поведении отдельных электронов-перебежчиков, мы будем оценивать лишь конечный результат их деятельности. А таким результатом как раз и является движение положительных зарядов, движение дырок.
Совершенно ясно, что под действием приложенного напряжения в полупроводнике будут упорядоченно двигаться не только электроны-путешественники, но и электроны-перебежчики. Бросаясь из стороны в сторону, они все чаще будут сдвигаться в сторону «плюса» батареи. А это значит, что в хаотическом движении дырок появится некоторая упорядоченность — они медленно и планомерно будут смещаться в сторону «минуса».
Здесь нельзя не вспомнить хорошо известную аналогию. В театре во время спектакля освободилось место в первом ряду. На него сейчас же пересел зритель со второго ряда. На место, освободившееся во втором ряду, пересел зритель из третьего ряда. На его место пересел кто-то из четвертого ряда, и так продолжалось до тех пор, пока свободное место не оказалось в самом последнем ряду. С места на место перебегали люди (электроны-перебежчики), а в результате по залу от первого ряда до последнего переместилось свободное место (дырка).
Теперь, чтобы окончательно не запутаться, давайте вообще забудем о существовании наших электронов-перебежчиков и будем считать, что в полупроводнике электрический ток представляет собой движение двух сортов зарядов — свободных электронов и дырок, что полупроводник обладает электронной и «дырочной» проводимостью.
Подобный прием — исключение из игры электронов-перебежчиков— можно считать вполне оправданным: нельзя же всякий раз начинать свои рассуждения «от печки». Изучая автомобиль, например, вы только один раз подробно познакомитесь с двигателем. А потом, разбираясь в устройстве коробки скоростей или в передаче вращения от двигателя к задним колесам, вы уже не будете начинать с того, как в карбюраторе образуется горючая смесь.
Вас ни в какой мере не должно смущать, что участвующие в электрическом токе свободные электроны и дырки движутся в разные стороны. В твердом теле настолько просторно, что эти движения друг другу не мешают.
При этом каждый из движущихся зарядов, независимо от своих коллег (вы не забываете о примечании на стр. 26?), выполняет свою работу. Поэтому, определяя ток в цепи или мощность на каком-либо ее участке, необходимо учитывать движение и отрицательных, и положительных зарядов. Так, например, если через поперечное сечение проводника (или полупроводника) в каком-либо определенном направлении за одну секунду прошел кулон электронов, а в другую сторону одновременно прошел кулон дырок, то ток в цепи равен 2 а.