Рудольф Сворень - Шаг за шагом. Транзисторы
Отрицательная обратная связь позволяет выполнить еще одну важную операцию — осуществить регулировку тембра, то есть в нужном направлении изменить частотную характеристику усилителя. Эта характеристика показывает, как меняется усиление с изменением частоты сигнала.
Для идеального усилителя частотная характеристика — это просто прямая линия: усиление на всех частотах у такого усилителя одинаково. Но у реального усилителя частотная характеристика загнута, завалена в области самых низких и самых высоких частот. Это значит, что низшие и высшие частоты звукового диапазона усиливаются хуже, чем средние частоты. Причины появления таких завалов частотной характеристики могут быть разными, но корень у них общий. Неодинаковое усиление на разных частотах получается потому, что в схеме имеются реактивные элементы — конденсаторы и катушки, сопротивление которых меняется с частотой.
Существует много способов исправления частотной характеристики, в том числе и введение частотно-зависимых элементов в цепь обратной связи. Пример таких элементов — цепочка R13C9 в нашем усилителе. Сопротивление этой цепочки с уменьшением частоты растет (Воспоминания № 13 и № 16), обратная связь уменьшается, и благодаря этому создается некоторый подъем частотной характеристики в области низших частот.
В усилителе имеется еще несколько цепей отрицательной обратной связи. Это конденсатор С6, соединяющий коллектор транзистора Т2 с его базой; резистор R12, который подает на базы выходных транзисторов не только постоянное смещение, но еще и некоторую часть выходного сигнала; цепочка, которая создает обратную связь третьего каскада со вторым, но уже не по переменному, а по постоянному току (такая обратная связь повышает термостабильность усилителя).
Громкоговоритель включен в коллекторные цепи выходных транзисторов через разделительный конденсатор С4. Сопротивление звуковой катушки в данной схеме может составлять 6—10 ом. Усилитель развивает мощность до 100 мвт при напряжении входного сигнала около 30–50 мв.
Существует довольно большое число схем бестрансформаторных усилителей на транзисторах разной проводимости. В большинстве из них в выходном каскаде используют составные транзисторы, то есть в каждое плечо включают два транзистора. Отсутствие трансформаторов и уменьшение числа разделительных конденсаторов позволяет в таких усилителях получить очень хорошую частотную характеристику. Однако начинающему радиолюбителю этот выигрыш достается довольно дорогой ценой — бестрансформаторные усилители, да еще с составными транзисторами, не всегда просто наладить. И поэтому, если у вас еще нет большого опыта в налаживании транзисторной аппаратуры, лучше собрать усилитель по классической двухтактной схеме с трансформаторами (рис. 45).
Еще одна двухтактная схема с трансформаторами приведена на рис. 104—7. Главная особенность усилителя — фиксированное от отдельной батареи Б2 смещение на базу первого каскада Т1. Благодаря этому коллекторный ток транзистора Т1 остается практически неизменным при уменьшении напряжения коллекторной батареи вплоть до 3,5 в. С нижней части делителя R4R5, включенного в эмиттерную цепь Т1, подается смещение на базы транзисторов выходного каскада. И поэтому при уменьшении коллекторного напряжения смещение транзисторов Т3Т4 не меняется. В результате усилитель работает при пониженном напряжении, хотя и с меньшей выходной мощностью (при 3,5 в — 20 мвт), но без искажений.
Ток, потребляемый от батареи Б2, не превышает 500 мка.
В усилителе имеется простейший регулятор тембра R6С5 и цепь обратной связи R8С8, снижающая искажения. Резистор R9 необходим для того, чтобы при выключении Б2 (может случиться так, что Вк2, разомкнет цепь на какие-то доли секунды раньше, чем Вк1) транзистор Т1 не оказался с «висящей базой» (рис. 89). Конденсаторы С7С6 — элементы отрицательной обратной связи, предотвращающие самовозбуждение на сверхзвуковых частотах. Ту же задачу выполняет конденсатор С1.
Трансформаторы Тр1 и Тр2 взяты от приемника «Альпинист» (таблица 12). Громкоговоритель с сопротивлением звуковой катушки около 6 ом.
При коллекторном напряжении 9 в усилитель развивает мощность 180 мет и потребляет от батареи Б2 ток не более 20–25 ма. Если нужно повысить выходную мощность, можно включить в качестве Т3 и Т4 мощные транзисторы, например П201. В этом случае нужно уменьшить в два раза R7 и подобрать R5 с таким расчетом, чтобы общий коллекторный ток покоя Т3 и Т4 составлял 15–25 ма. Для мощных транзисторов нужен другой выходной трансформатор, например, с такими данными: сердечник сечением около 3,5 см2 (Ш17х17); первичная обмотка 330 + 330 витков ПЭ 0,31, вторичная обмотка 46 витков ПЭ 0,51. С транзисторами П201 усилитель развивает выходную мощность 1,5–2 вт.
На рис. 110 приведена схема усилителя НЧ с выходной мощностью 2,5–3 вт. Его второй каскад — фазоинвертор с разделенными нагрузками. После него следуют два совершенно одинаковых эмиттерных повторителя (Т3, Т4), каждый из которых подает сигнал на свое плечо двухтактного выходного каскада. Для громкоговорителя с сопротивлением звуковой катушки 5 ом выходной трансформатор может иметь следующие данные: сердечник сечением 3 см2; обмотка 1 — 2х200 витков ПЭ 0,33, обмотка II — 100 витков ПЭ 0,8.
Рис. 110. Усилитель НЧ с выходной мощностью 2,5–3 вт.
Налаживание всех усилителей НЧ сводится к подбору режимов транзисторов. Для двухтактных схем желательно предварительно подобрать для обоих плеч транзисторы с близкими параметрами: коэффициентом усиления по току β и обратным током коллектора Iко. Если все детали исправны и схема собрана правильно, то усилитель, как правило, сразу начинает работать. И единственная серьезная неприятность, которая может обнаружиться при включении усилителя, — это самовозбуждение. Один из способов борьбы с ним — введение развязывающих фильтров (аналогичных R14C5 в схеме рис. 104—6), которые предотвращают связь между каскадами через источники питания (рис. 77). С другими способами борьбы с самовозбуждением мы познакомимся в следующем разделе книги, после того, как выясним некоторые подробности превращения усилителя в генератор.
ПРЕВРАЩЕНИЕ В ГЕНЕРАТОР
Человек, изучающий электронику, подобен туристу, плывущему мимо красивейших берегов Крыма или Кавказа и вынужденному наблюдать эти берега лишь с борта корабля. Человек, изучающий электронику, очень часто проплывает мимо изумительно красивых явлений природы, мимо очень важных, можно даже сказать — фундаментальных, научных проблем и не имеет возможности сойти на берег, чтобы познакомиться с ними. Иначе путешествие слишком затянется или даже изменится его конечный маршрут. (Последнее, кстати, совсем неплохо, но только не в начале пути. Есть немало примеров того, как радиоинженеры уходили в биологию, ракетостроение, математику, химию, медицину, геофизику, сельское хозяйство, астрономию и другие области. Обогащенные методами и идеями электроники, они открывали в этих областях науки новые направления или, подобно катализатору, резко ускоряли ход исследований.)
Мы с вами уже прошли мимо таких интересных и общих проблем как преобразование структуры вещества, универсальность гармонических (синусоидальных) колебаний, преобразование спектра сигнала, согласование генератора с нагрузкой, управление мощными потоками энергии с помощью слабых сигналов и др. Сейчас нам предстоит встреча еще с одним общим, универсальным явлением — с возникновением автоколебаний.
Мы часто встречаем механические автоколебания: вибрация самолетного крыла и автоколебания в гидравлических системах (вам наверняка приходилось слышать «поющий» водопроводный кран), и автоколебания далеких звезд, и автоколебания в мире атома, автоколебания при ядерных реакциях и электромагнитные автоколебания. Есть серьезные основания думать, что автоколебания играют важнейшую роль и в живой природе, что сама жизнь — это огромное многообразие разного рода, разной степени сложности биохимических автоколебаний.
Что же такое автоколебания? Энциклопедический словарь определяет их так: «…незатухающие колебания, которые могут существовать в какой-либо системе в отсутствие переменного внешнего воздействия, причем амплитуда и период колебаний определяются свойствами самой системы». Применительно к транзисторному устройству, где создаются автоколебания (вы уже, конечно, догадались, что именно такое устройство и называется транзисторным генератором), это определение нужно понимать следующим образом. Мы подводим к генератору только питающее постоянное напряжение, а он дает нам непрерывные, непрекращающиеся электрические колебания (конечно, когда батарея разрядится, то колебания прекратятся, но об этом сейчас не стоит говорить). Генератор создает в своих цепях переменный ток и переменное напряжение, частота и амплитуда которых зависят только от элементов самой транзисторной схемы.