РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
Даже портфели, состоящие из акций голубых фишек (blue-chip stocks), находящиеся на уровне неограниченного геометрического оптимального портфеля, могут показать значительные проигрыши. Однако этими акциями следует торговать именно на таких уровнях для максимизации отношения потенциального геометрического выигрыша к дисперсии (риску), чтобы обеспечить достижение цели за наименьшее время. С этой точки зрения торговля голубыми фишками является такой же рискованной, как и торговля контрактами на свинину, а торговля свининой не менее консервативна, чем торговля надежными акциями. То же можно сказать о портфеле фьючерсов или облигаций.
Наша цель заключается в достижении желаемого уровня потенциального геометрического выигрыша, исходя из данной дисперсии (риска), путем комбинирования безрискового актива с торгуемым инструментом, будь то портфель голубых фишек, облигаций или портфель фьючерсных торговых систем.
Когда вы торгуете портфелем с неограниченной суммой весов, используя дробное f, то находитесь на эффективной границе GHPR для портфелей с неограниченной суммой весов, но слева от геометрической оптимальной точки, которая удовлетворяет любому уравнению с (7.06а) по (7.06д). Таким образом, ваш потенциальный выигрыш по отношению к риску меньше, чем в геометрической оптимальной точке. Это один из способов, с помощью которого вы можете комбинировать портфель с безрисковым активом.
Другой способ размещения активов — разделение вашего счета на два подсчета, активный и неактивный. Они не являются двумя реальными отдельными счетами — это условное разделение. Метод работает следующим образом. Определите первоначальное соотношение двух подсчетов. Допустим, вы хотите создать подсчет, который соответствует f/2, т.е. первоначальное соотношение долей составит 0,5/0,5, таким образом, половина баланса вашего счета будет относиться к неактивному подсчету, а половина к активному подсчету. Допустим, вы начинаете со счета 100 000 долларов, причем 50 000 долларов относятся к неактивному счету, а 50 000 долларов к активному счету, и именно баланс активного подсчета следует использовать для определения количества контрактов для торговли. Подсчета являются гипотетической конструкцией, которая создается для того, чтобы более эффективно управлять деньгами, и в этом случае следует использовать полные оптимальные f. Каждый день из общего баланса счета следует вычитать неактивную сумму (которая остается постоянной каждый день), полученное значение будет соответствовать активному балансу, и именно по нему следует рассчитывать количество контрактов для торговли при полном f.
Теперь допустим, что оптимальное f для рыночной системы А соответствует 1 контракту на каждые 2500 долларов на балансе счета. В первый день активный баланс равен 50 000 долларов, и вы можете торговать 20 контрактами. Если бы вы использовали стратегию, основанную на f/2, то в первый день задействовали это же количество контрактов ($2500/0,5), но при общем балансе счета в 100 000 долларов. Поэтому при стратегии, основанной на f/ 2, в этот день следует также торговать 20 контрактами. Когда изменяется баланс, число контрактов, которыми следует торговать, тоже изменяется. Предположим, вы заработали 5000 долларов, увеличив общий баланс счета до 105 000 долларов. При стратегии половинного f вам следует торговать 21 контрактом. Однако при использовании метода разделения баланса вы должны вычесть постоянную неактивную сумму 50 000 долларов из общего баланса 105 000 долларов. В результате вы получите активную часть баланса в 55 000 долларов и уже на основе этого определите количество контрактов при уровне оптимального f (1 контракт на каждые 2500 долларов на счете). Таким образом, при использовании метода разделения счета вам следует торговать 22 контрактами.
Похожая ситуация возникает и при падении баланса вашего счета. Метод разделения счета уменьшает количество контрактов с большей скоростью, чем это делает стратегия половинного f. Допустим, вы потеряли 5000 долларов в первый день торговли и общий баланс счета уменьшился до 95 000 долларов. При стратегии дробного f вам следует торговать 19 контрактами ($95 000/$5000). Однако при использовании метода разделения баланса активный счет будет равен 45 000 долларов, и вам следует торговать 18 контрактами ($45 000/$2500).
Отметьте, что при использовании метода разделения счета доля оптимального f изменяется вместе с балансом. Сначала определяется доля баланса, которая будет задействована в торговле (в нашем примере мы использовали первоначальную долю 0,5). При повышении баланса доля оптимального f повышается, приближаясь в пределе к 1, когда баланс счета стремится к бесконечности. При падении баланса доля f приближается в пределе к 0, а общий баланс счета при этом стремится к неактивной части. Тот факт, что страхование портфеля встроено в метод разделения баланса, является огромным преимуществом, и об этой особенности мы еще поговорим позже. Так как метод разделения счета использует изменяющееся дробное f, мы назовем такой подход стратегией динамического дробного f, в противоположность стратегии статического дробного f.
Стратегия статического дробного f смещает вас по линии CML влево от оптимального портфеля, если вы используете ограниченный портфель, и при любых изменениях баланса счет будет оставаться у этой точки на линии CML. Если вы используете неограниченный портфель (что является лучшим подходом), то будете на эффективной границе для портфелей с неограниченной суммой весов (так как нет линий CML для неограниченных портфелей) слева от оптимального портфеля. Когда баланс счета изменяется, вы остаетесь в той же точке на неограниченной эффективной границе. Если речь идет об использовании динамического дробного f для ограниченного или неограниченного портфеля, вы начинаете у тех же точек, но, когда баланс счета повышается, портфель сдвигается вправо вверх, а когда баланс понижается, портфель сдвигается влево вниз. Правая граница находится у пика кривой, где доля f равна 1, а левая — у точки, где доля f равна 0.
При размещении активов с помощью метода статического f дисперсия не меняется, так как используемая доля оптимального f постоянна, но в случае с динамическим дробным f дисперсия — переменная величина. В этом случае, когда баланс счета увеличивается, увеличивается также и дисперсия, поскольку возрастает используемая доля оптимального f. Верхней границы дисперсия достигает при полном f, когда баланс счета приближается к бесконечности. При падении баланса счета дисперсия быстро уменьшается по мере приближения используемой доли оптимального f к нулю, когда общий баланс счета приближается к балансу неактивного подсчета, и в этом случае нижняя граница дисперсии равна нулю.
Метод динамического дробного f аналогичен методу, основанному на полном оптимальном f, когда первоначальный размер торгового счета равен активной части баланса. Итак, есть два способа размещения активов: с помощью статического дробного и с помощью динамического дробного f. Динамическое дробное f дает динамическую дисперсию, что является недостатком, но такой подход также обеспечивает страхование портфеля (об этом позднее). Хотя эти два метода имеют много общего, они все-таки серьезно отличаются. Какой же из них лучше? Рассмотрим систему, где дневное среднее арифметическое HPR= 1,0265. Стандартное отклонение дневных HPR составляет 0,1211, поэтому среднее геометрическое равно 1,019. Теперь посмотрим на результаты торговли при статических дробных оптимальных 0, If и 0,2f. Для этого используем уравнения с (2.06) по (2.08):
где FRAC = используемая дробная часть оптимального f;
AHPR = среднее арифметическое HPR при оптимальном f;
SD = стандартное отклонение HPR при оптимальном f;
FAHPR = среднее арифметическое HPR при дробном f;
FSD = стандартное отклонение HPR при дробном f;
FGHPR = среднее геометрическое HPR при дробном f. Результаты будут следующими:
Полное f 0,2 f 0,1 f AHPR 1,0265 1,0053 1,00265 SD 0,1211 0,02422 0,01211 GHPR 1,01933 1,005 1,002577
Теперь вспомним уравнение (2.09а) — ожидаемое время для достижения определенной цели:
где N = ожидаемое количество сделок для достижения определенной цели;
Цель = цель в виде множителя первоначального счета, т.е. TWR;
1n() = функция натурального логарифма.
Сравним торговлю при статическом дробном 0,2f при среднем геометрическом 1,005 с торговлей, основанной на стратегии динамического дробного 0,2f (первоначальный активный счет составляет 20% от общего) при дневном среднем геометрическом 1,01933. Время (так как средние геометрические имеют дневные значения, время измеряется в днях), требуемое для удвоения счета при статическом дробном f, можно найти с помощью уравнения (2.09а):