KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса

Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Марио Ливио, "Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса" бесплатно, без регистрации.
Назад 1 ... 62 63 64 65 66 Вперед
Перейти на страницу:

154

Прекрасное описание можно найти в Weinberg 1993.

155

Один из лучших обзоров диспутов о природе математики можно найти в Barrow 1992. Несколько более научный, но все же доступный очерк основных идей дан в Kline 1972.

156

Многие темы этой книги прекрасно раскрыты в Barrow 1992.

157

Подробнейшее описание понятия золотого сечения, его истории и свойств см. в Livio 2002, а также в Herz-Fischler 1998.

158

Интересные идеи по этому поводу изложены в статье Иегуды Рава в Hersh 2000.

159

Популярно об этом рассказано в Hockett 1960.

160

Доступное и хорошо изложенное обсуждение вопросов нейролингвистики можно найти у Obler and Gjerlow 1999.

161

Схожесть языка и математики обсуждается в Sarrukai 2005 и Atiyah 1994.

162

Chomsky 1957. Если вас больше интересует лингвистический аспект, можно найти прекрасное описание в Aronoff and Rees-Miller 2001. Очень интересная научно-популярная точка зрения представлена в Pinker 1994.

163

Тегмарк выделяет четыре различных типа параллельных вселенных. Вселенные «Уровня I» – это вселенные с теми же законами физики, но иными начальными условиями. На «Уровне II» находятся вселенные с теми же физическими равенствами, но, вероятно, с другими фундаментальными постоянными. На «Уровне III» задействована «многомировая интерпретация» квантовой механики, а на «Уровне IV» – другие математические структуры. Tegmark 2004, 2007b.

164

Превосходный обзор этой темы см. в Vilenkin 2006.

165

Некоторые мнения я не обсуждаю. Например, Стейнер (Steiner 2005) утверждает, что Вигнер не доказывает, что примеры, которые он приводит, имеют какое-то отношение к тому, что эти понятия именно математические.

166

Gross 1988. Более углубленный разбор отношений между физикой и математикой можно найти в Vafa 2000.

167

См. превосходную статью Херша в сборнике Hersh 2000.

168

Сочинения самого Кеплера – Kepler 1981 и 1997 – само по себе интереснейшее чтение по истории науки. Существует несколько прекрасных биографий Кеплера, в том числе Caspar 1993 и Gingerich 1973.

169

Интересное обсуждение применимости математики приведено в Raymond 2005. Глубокий разбор загадки Вигнера с разных точек зрения можно найти в Wilczek 2006, 2007.

Назад 1 ... 62 63 64 65 66 Вперед
Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*