KnigaRead.com/

Александр Гордон - Диалоги (июнь 2003 г.)

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Александр Гордон, "Диалоги (июнь 2003 г.)" бесплатно, без регистрации.
Перейти на страницу:

Это вообще интересная история. Слово «фрактал» вошло в науку с подачи учёного наших дней – Мандельброта, а на самом деле идея была высказана в 18-м году замечательным математиком Феликсом Хаусдорфом. Только он таких слов хороших не знал. Он сформулировал понятие «дробной размерности», мы его попозже посмотрим на других картинках. Множество точек на временной оси, когда случались инверсии, это множество с дробной размерностью. Оно занимает промежуточное положение между дискретным набором точек и непрерывной прямой. Все признаки того, что нечто подобное случается в гораздо более сложном пространстве признаков видов, налицо.

То есть складывается впечатление, что вопрос о том, сколько видов бывает одуванчиков поставлен не совсем правильно.

А.О. Или сколько видов во флоре Московской области.

Д.С. Да, сколько видов одуванчиков во флоре Московской области – это не совсем корректный вопрос.

А.О. Не обязательно одуванчиков, а вообще, сколько видов растений во флоре Московской области.

Д.С. По-видимому, какие-то хорошо определённые виды, разграниченные, организуются в роды, семейства, и так далее, а есть места в этом биологическом разнообразии, где эта структура выражена хуже. Здравый смысл подсказывает, что, наверное, там и происходит развитие биоразнообразия.

А.О. Как раз ваш доклад навёл на мысль о том, что вид, помимо того, что он представляет собой некий природный объект, может рассматриваться как место. Именно место. А место – штука, если вдуматься, очень странная. Вот у нас комната, в ней есть места для стула, для стола и так далее. Но мы не можем сказать, сколько в комнате мест. Место – такой странный объект, который устроен фрактально. Стол находится в комнате, в Москве, в России, на земном шаре. И представление о виде именно как о некотором месте в естественной системе, на мой взгляд, достаточно продуктивно. Конечно, вид можно рассматривать как группу особей, которые между собой скрещиваются или обладают какими-то общими признаками. Однако такое топологическое представление вида просто как места может быть полезно и для систематики, и для флористики.

Но сейчас, наверное, стоит перейти к ещё одному сюжету, связанному с применением математики, математических подходов в систематике растений. История с ним достаточно поучительна. В 1960-е годы немецкий энтомолог Вилли Хенниг разработал некоторый алгоритм для определения родственных отношений между группами организмов. Покажите, пожалуйста, следующую иллюстрацию.

Систематик работает с матрицей данных. Я здесь просто привёл пример такой матрицы данных. У нас есть четыре самых разных организма: лягушка, черепаха, ворона, кошка. И некоторый набор признаков. Здесь для примера пять признаков. У нас есть некоторое представление об эволюции этих признаков, исходящее из каких-то общебиологических представлений. И мы можем чисто формально построить так называемую «кладограмму», то есть дерево, иллюстрирующее родственные связи между данными организмами. Здесь получается, что положение вороны при данном наборе признаков оказывается несколько противоречивым, в то время как положение черепахи или кошки более-менее понятно. К кому ближе ворона – к кошке или к черепахе? Я подчёркиваю, это пример достаточно умозрительный. Реально всё сложнее. Но здесь возможны два варианта. С кошкой ворону сближает теплокровность, с черепахой её сближает сухая кожа, кожа, лишённая желез. И как раз существуют вычислительные алгоритмы для подобных операций, для построения подобных деревьев, и когда таких признаков и таких групп организмов сотни, то и таких неясных ситуаций тоже накапливается много. И поэтому долгое время систематики относились с большим скепсисом к таким кладистическим подходам. До 90-х годов, когда были усовершенствованы методы молекулярной биологии, и секвенирование, то есть определение последовательности ДНК, стало, в общем, рутинной лабораторной процедурой. Если не в России, по бедности, то на Западе. Сейчас это вопрос денег и небольшого количества рабочего времени. И как оказалось, сейчас…

Д.С. Но всё-таки в России тоже возможно…

А.О. Сейчас у нас, слава Богу, это тоже вполне возможно. В Москве существует лидирующая группа по молекулярной систематике под руководством Андрея Сергеевича Антонова при Московском университете…

Д.С. Да, я как представитель Московского университета не могу молчать…

А.О. Мы в нашем Ботаническом институте очень гордимся, что этой зимой мы провели первый секвенс, наконец-то освоили. То есть одно дело Москва, другое дело – остальная Россия. Это тоже не надо забывать.

Д.С. Ну, не надо… У вас всё-таки лидирующий ботанический институт в России…

А.О. Сейчас вопрос о чисто техническом оснащении. Так или иначе, обнаружились объекты, которых можно брать много, строить матрицы данных с очень большим числом равновесомых признаков. Тот нуклеотид или иной нуклеотид в данной позиции – вот вам и признак. Этих нуклеотидов тысячи. И если для морфологических признаков, которые видны простым глазом, этот подход действительно не очень работал, во-первых, потому что признаков не так много, а во-вторых, а может быть, даже во-первых, потому что эти признаки заведомо неравнозначны, и вообще любой объект мы можем расчленить на неопределённое число признаков, то последовательности ДНК дают нам совершенно объективное расчленение на чёткие и равновесомые признаки. И вот сейчас молекулярная систематика стала достаточно мощной областью, она уже прочно вошла, собственно, в ботанику. Хотя это и порождает определённые проблемы. Тут, наверное, вы расскажете лучше…

Д.С. Вы знаете, тут просто целый комплекс очень интересных математических задач. Во-первых, эти все алгоритмы требуют совершенно бешеного машинного времени. И в особенности оно нужно для того, чтобы сделать результаты по-настоящему убедительными. Даже несмотря на то, что сейчас персональные компьютеры очень быстро работают, эта задача явно не для персональных компьютеров. Очень здорово, что мы не только в молекулярной биологии проходим этапы технического совершенствования, но и в вычислительной математике. И буквально за последние года два, наверное, может, три стало реальным систематически пользоваться компьютерными кластерами. А эти задачи буквально идеально приспособленные для компьютерных кластеров. Тут нужно опробовать много вариантов кладограммы, дерева, которое мы смотрели. И можно очень здорово распараллелить эти задачи, поручить разным процессорам компьютерным изучать разные варианты. Вообще говоря, когда вы собираете кластеры из большого числа компьютерных процессоров, очень-очень не просто сделать так, чтобы они все были эффективно загружены. У нас сейчас в университете в вычислительном центре появился такой достаточно мощный кластер, а есть и в Академии наук, и в других местах. Это очень серьёзная область математики, как сделать хорошую загрузку разных процессоров.

Есть другая проблема. Классическая вычислительная математика сначала была проговорена и продумана ещё в докомпьютерную эпоху, когда сначала долго объясняли, как этот алгоритм работает и почему его так надо организовывать, а не как-нибудь по-другому. Я верю, что те, кто писал кладистические программы, хорошо понимают, почему они должны работать именно так. Но это знание, оно в очень многом не очевидно. И вот для компьютерной реализации это очень необычная ситуация, когда вроде бы есть работающая программа, а как она точно работает и почему – пользователи затрудняются объяснить. Ну, с этим тоже, по-видимому, удастся сладить. Но в целом это очень привлекательная задача – сделать так, чтобы эти программы пошли на кластерах параллельных компьютеров и чтобы действительно мы понимали не просто рецептурно, как она работает, а концептуально.

А.О. К сожалению, очень немногие систематики, пользователи подобных программ, вообще задаются вопросом: а что там внутри этой программы? То есть признаки грузят, на выходе получают кладограмму. Она им нравится или не нравится, и какие-то меняют условия, играют. А смысл того, что внутри, к сожалению, остаётся, как правило, за кадром. Тут возникает масса недоразумений. Лично я смотрю на эти программы и на эти деревья как на своего рода карты, карты разнообразия живого. Это отнюдь не генеалогические деревья, не дерево, которое изображает историю, буквальный исторический сценарий, как развивались данные таксоны, а именно как карта. И, точно так же, как в географии, существуют разные способы спроецировать земную поверхность, которая отнюдь не ровная, на плоскость карты. Существуют разные проекции. Существуют разные системы координат. Аналогично и здесь. Просто разные программы, насколько я понимаю, отличаются способом проецирования эмпирического разнообразия живых организмов на некоторую идеальную плоскость или на некоторое идеальное пространство. Но тут, наверное, можно перейти к распознаванию…

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*