KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Научпоп » Виолетта Гайденко - Западноевропейская наука в средние века: Общие принципы и учение о движении

Виолетта Гайденко - Западноевропейская наука в средние века: Общие принципы и учение о движении

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Виолетта Гайденко, "Западноевропейская наука в средние века: Общие принципы и учение о движении" бесплатно, без регистрации.
Перейти на страницу:

В отличие от механики нового времени, отождествившей (хотя и не сразу) понятие скорости с отношением двух величин (пути и времени), на протяжении всего средневековья скорость понималась как особого рода качество, присущее телу только в момент его движения. Скорость, понимаемую как качество, нельзя свести ни к какому отношению, и не только потому, что для этого потребовалось бы ввести отношение между неподобными величинами, а это противоречило традиции, в русле которой развивалась математика со времен античности. Скорость не могла быть представлена в виде отношения прежде всего потому, что она была подведена под другую категорию. Присущая схоластике культура логического мышления удерживала исследователей от искушения перевести понятие, соответствующее категории качества, в другую категорию. Считалось допустимым сопоставить одному качеству одно понятие, принадлежащее к другой категории, например некоторую величину, а отношению качеств — отношение величин (установление таких соответствий является как раз одной из наиболее характерных черт учения о движении в рассматриваемый период), но нельзя было за меру одного качества взять отношение нескольких величин.

К качествам, рассматривавшимся Аристотелем, средневековые авторы добавили новое: качество движения (qualitas motus), совпадающее с его интенсивностью (intensio motus). Качество движения они отличали от его количества (quantitas motus). Это очень важное для средневековой механики различие появилось в результате приложения к учению о движении фундаментального различия, введенного в XIV в. в схоластику, выражаемого противопоставлением интенсивного и экстенсивного. Анализируя динамический аспект движения, Томас Брадвардин в «Трактате о пропорциях скоростей в движениях» (1328 г.) приходит к выводу, что о зависимости, существующей между скоростью движения и сопротивлением среды, можно говорить в двояком смысле. Среда в целом и части среды «будут равны по качеству сопротивления», но, очевидно, отличаться по количеству (имеется в виду случай движения в однородной среде). Поэтому, если сопоставить между собой различные части движения одного и того же тела, то окажется, что они «не отличаются по качеству движения (которое есть быстрота и медленность — velocitas et tarditas), но скорее различаются по количеству движения (которое есть долгота или краткость времени — longitudo vel brevitas temporum)» [162, 118].

Из трактата Брадвардина различение качества и количества движения перешло в работы мертонских «калькуляторов», а оттуда — к Николаю Орему, парижскому номиналисту, которому удалось придать учению о широте форм гораздо более удобопонятный вид благодаря использованию геометрических методов. В «Трактате о конфигурации качеств» (написан до 1371 г.) Орем предлагает изображать интенсивность любого качества, в том числе и соответствующую качеству движения, «в виде прямой линии, направленной отвесно в какой-нибудь точке пространства» [46, 637], а экстенсивность — посредством линии, проведенной через предмет, на каковой линии отвесно поставлена линия интенсивности его качества» [46, 640]. Интенсивность качества является характеристикой, независимой от пространственной протяженности и временной длительности, присущей, в отличие от двух последних, любому качеству: «ни одно качество, приобретаемое в процессе качественного изменения, не может быть воображаемо без интенсивности, т. е. без различия в смысле интенсивности, тогда как оно вполне может быть воображаемо без экстенсивности, более того, качество неделимого предмета (например, души или ангела) экстенсивности не имеет» [46, 639]. Интенсивная характеристика движения (его качество), не имеющая протяженности и длительности, — это мгновенная скорость, или, что то же самое, интенсивность скорости (intensio velocitatis)[84]. Движение в целом оказывалось тогда как бы состоящим из неделимых моментов, но показательно, что вместо точки — геометрического образа момента движения в античной физике — Орем говорит о перпендикуляре, т. е. об отрезках определенной длины, только величина этих отрезков непосредственно не имеет никакого отношения к протяжению и длительности, т. е. к экстенсивным параметрам движения. «Интенсивные величины» (соответствующие intensio motus, intensio velocitatis) были величинами другого, не пространственно-временного измерения. Они вели себя как величины до тех пор, пока их сравнивали только между собой, отвлекаясь от экстенсивного аспекта движения, представленного в понятии количества движения, или целокупной (суммарной) скорости (quantitas motus, totalis velocitas). На геометрическом языке Орема последнему понятию соответствовала площадь фигуры, образованной в результате суммирования всех скоростных перпендикуляров, указывающих величину intensio velocitatis в каждый момент движения. Площадь, таким образом, мыслилась состоящей из линий, из того, что не имеет величины, если под величиной подразумевать только обладающее двумя измерениями. Тем самым был решен вопрос о наглядной геометрической иллюстрации соотношения понятий качества и количества движения.

Но каков был физический смысл этих понятий? Чтобы оценить его адекватно, надо учесть принципиальное различие в трактовке понятия скорости, даваемой, с одной стороны, средневековым учением о широте форм, а с другой — механикой нового времени, о чем уже упоминалось в общих чертах. Если скорость в классической физике определяется через путь и время, то в средневековой ее величина (градус скорости) задается совершенно произвольно. Средневековые авторы, говоря о том, что движущееся тело имеет скорость 2, 4, 6 или п, даже не пытались выяснить, что это значит, каким образом можно измерить эти величины, к какой системе единиц они относятся. На этом основании А. Майер относит in-tensio velocitatis к понятиям скорее метафизическим, чем физическим (см.: [125, 122]). Определению скорости как интенсивности (под которое подпадает и общее определение мгновенной скорости) она противопоставляет другое определение мгновенной скорости, которое было дано Хейтсбери: «Скорость в любой данный момент времени будет определяться путем, который был бы описан наиболее быстро движущейся точкой, если бы в течение некоторого периода времени она двигалась бы равномерно с той степенью скорости, с которой она двигалась в этот момент, какой бы момент ни был указан» [103, 240]. А. Майер, по-видимому, права, рассматривая понятие интенсивности скорости (характеризуемое «интенсивной величиной» — градусом скорости) и определение скорости через экстенсивную величину (путь) как совершенно различные определения, внутренне не связанные между собой. Точно так же Майер настаивает на отсутствии какой бы то ни было связи и между понятиями суммарной (total) скорости и пути, отказывая вследствие этого понятию velocitas totalis в физическом содержании. Разбирая оремов способ представления суммарной скорости в виде площади геометрической фигуры, она резюмирует: «Мера этой площади есть не что иное, как совокупное количество наличных скоростей: понятие, лишенное физического значения. Отсюда нет пути к познанию, что эта мера отвечает пройденному пути». Только «гениальная небрежность» Орема, как пишет далее А. Майер, позволяет ему приравнять velocitas totalis к пути. У Орема «на место понятия о скорости, которое только что применялось и которое обозначало интенсивность движения, молчаливо подставляется другое, которое приравнивает per definitionem суммарную скорость—пути» [125, 129; цит по: 23,134].

Может быть, А. Майер не совсем права, объявляя отрывок из «Трактата о конфигурации качеств», где Орем прямо устанавливает зависимость между суммарной скоростью и пройденным путем, как случайный и непоказательный для Орема. Следует скорее согласиться с В. П. Зубовым (см.: [23, 133—134]), что Орем с полной определенностью формулирует положение о пропорциональности суммарной скорости и пути, когда пишет: «Если бы что-либо движущееся двигалось в первую пропорциональную часть какого-либо времени {например, часа], а во вторую часть двигалось бы вдвое быстрее, а в третью — втрое быстрее, и так непрерывно до бесконечности, то суммарная скорость (velocitas totalis) оказалась бы ровно в 4 раза больше суммарной скорости первой части, так что движущееся за весь час прошло бы вчетверо большее расстояние, нежели' то, которое оно прошло за первую часть этого часа» [46, 710]. Однако А. Майер, как нам представляется, безусловно права, настаивая на том, что в основе средневекового учения о движении лежали понятия интенсивности скорости и суммарной скорости, которые имели совсем иное концептуальное содержание, чем определение скорости посредством пройденного пути, вошедшее в механику нового времени в качестве основного. Вызывает возражение другое — ее решительный отказ признать за понятием скорости как меры интенсивности движения реальное физическое содержание. Стержневая идея средневекового учения о широте форм — описать движение и качественное изменение исходя из понятия интенсивности — получает у А. Майер негативную оценку, рассматривается ею как тупиковый (с точки зрения последующего развития физики) путь.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*