Роберт Криз - Призма и маятник. Десять самых красивых экспериментов в истории науки
В напряженной атмосфере активного научного поиска Резерфорду быстро удалось обратить на себя внимание. В 1898 году он покинул «колыбель» и перешел в университет Макгилла в Монреале, где и работал до 1907 года. В ходе изучения явления радиоактивности он сделал неожиданное и очень важное открытие: уран излучает два разных вида радиации. Для демонстрации этого феномена Резерфорд разработал простой и предельно убедительный эксперимент: он покрывал образец урана слоями алюминиевой фольги и затем измерял количество проникавшей сквозь нее радиации. При одном и двух слоях уровень радиации снижался, при трех слоях падал значительно. Однако, как ни странно, четвертый и пятый слой уже не оказывали заметного воздействия, и радиация продолжала проникать сквозь фольгу. Для Резерфорда это стало основанием полагать, что уран излучает два вида радиации, один из которых значительно мощнее другого. Более слабый из них он назвал «альфа-лучами», а более сильный – «бета-лучами», по двум первым буквам греческого алфавита.
Так получилось, что именно альфа-лучи – их природа, поведение и возможности использования – определили суть дальнейшей научной деятельности Резерфорда. Студенты Резерфорда шутливо замечали, что их наставник «случайно создал альфа-частицы, умудрился подчинить их себе, и теперь они вместе творят чудеса». Альфа-частицы станут главным инструментом ученого в открытии внутренней структуры атома, хотя и это открытие тоже будет случайным.
Резерфорд очень скоро понял, что ни альфа-, ни бета-лучи не являются лучами в том же смысле слова, как, скажем, рентгеновские лучи. Они были, скорее, частицами электрически заряженной материи, которые атомы урана выбрасывали из себя по причинам, на тот момент неизвестным. Вскоре выяснилось, что отрицательно заряженные бета-лучи – это поток электронов. Природа же положительно заряженных альфа-лучей первоначально оставалась загадкой, но Резерфорд разрешил ее. Он обратил внимание на то, что масса альфа-частиц близка к массе атомов гелия, но были ли они и в самом деле атомами гелия?
Для проверки этой гипотезы исследователь разработал еще один простой эксперимент. Была изготовлена стеклянная трубка с тонкими, но прочными стенками – чтобы пропускать альфа-лучи и не разрушиться под атмосферным давлением. Трубку заполнили радоном, радиоактивным газом, испускающим альфа-лучи, и вставили ее в еще одну герметичную стеклянную трубку. Из пространства между трубками откачали весь воздух и создали в нем вакуум. Единственное, что могло туда проникнуть, – альфа-лучи, выходившие наружу сквозь стенки внутренней трубки. Резерфорд заметил, что в пространстве между трубками медленно собирался некий газ, причем со скоростью, прямо пропорциональной скорости, с которой альфа-частицы проходили сквозь стенку внутренней трубки. Проанализировав полученный газ, ученый обнаружил, что имеет дело с гелием. Альфа-лучи, или альфа-частицы, как их все чаще стали называть, были идентичны атомам гелия. «Этот эксперимент, – писал Марк Олифант, ученик Резерфорда, – вызвал огромный интерес по причине своей простоты, ясности и красоты»136.
Однако не на все вопросы были получены ответы. Каким образом положительно заряженные альфа-частицы превращались в гелий, который обычно электрически нейтрален? И что делали атомы гелия внутри атомов урана? Были ли они частицами, отколовшимися от атома, или чем-то еще? Как они соотносились с остальной частью атомного ядра?
Путь Резерфорда к ответу на эти вопросы оказался не прямым. Он начался с дружеской пикировки с Беккерелем – результаты некоторых экспериментов последнего противоречили выводам Резерфорда. Заметив расхождение в данных, оба ученых критично подошли к исследуемой проблеме, и выяснилось, что Резерфорд был прав. Однако дискуссия лишь раззадорила его любопытство. Почему так сложно было измерить характеристики альфа-частиц? Каким образом Беккерель, известный своей тщательностью и внимательностью при проведении экспериментов, мог ошибиться? Причина заключалась в способности альфа-частиц рикошетировать от молекул воздуха.
Эту особенность альфа-частиц Резерфорд продемонстрировал в обычном для него простом и непосредственном стиле. Вначале он направил пучок альфа-частиц на фотографическую пластину, находившуюся в вакууме, и в результате получил резко очерченное яркое пятно в месте столкновения. Затем направил такой же пучок на такую же пластину, но не в вакууме, а в воздухе. На сей раз пятно оказалось размазанным и туманным. Размазывание пятна, как писал Резерфорд в 1906 году, стало следствием «рассеивания лучей», отскакивавших от молекул воздуха. И хотя Резерфорд пока еще этого не знал, открытие рассеивания лучей станет ключевым шагом на пути к открытию атомного ядра.
Два года спустя Резерфорду присудили Нобелевскую премию – как ни странно, не по физике, а по химии – «за его исследования в области распада элементов и химии радиоактивных веществ». После вручения премии он язвительно заметил, что в ходе своих исследований он наблюдал много различных трансформаций, но самой быстрой из них была его собственная трансформация из физика в химика.
К тому времени Резерфорд уже вернулся в Англию, в Манчестерский университет. По мере того как росла заинтересованность ученого в точном измерении различных характеристик альфа-частиц, его все более раздражал феномен рассеяния, который мешал, к примеру, его попыткам измерить заряд альфа-частиц. Феномен рассеяния очень беспокоил и его коллег. Английский физик Уильям Генри Брегг прислал Резерфорду изображения следов «с резкими изгибами», оставленных альфа-частицами в камерах Вильсона. «Рассеяние – самый настоящий дьявол», – жаловался Резерфорд в письме еще одному своему коллеге.
Заняться измерениями рассеяния Резерфорд поручил своему новому ассистенту, Гансу Гейгеру – тому самому, который позднее изобрел знаменитый счетчик уровня радиоактивности. Это был еще один пример «бдительности экспериментатора» – инстинкта, который заставил Кавендиша измерить величину магнитных полей в его аппарате, а Милликена – изучать испарение водяных капель. Если в эксперименте возникает некая препятствующая сила, сначала следует измерить ее, а затем попытаться скомпенсировать. Так случилось, что просьба, обращенная Резерфордом к Гейгеру, стала еще одним шагом на пути к открытию атомного ядра. Поначалу Резерфорд этого не понимал; ему казалось, что он тратит время на изучение и измерение досадного препятствия, мешавшего точной оценке заряда и массы альфа-частиц.
Измерение характеристик альфа-частиц было утомительной и однообразной работой. Резерфорду и Гейгеру было известно, что при столкновении альфа-частиц с определенными химическими веществами – например, с фосфоресцирующим сульфидом цинка – возникают мгновенные вспышки, называемые сцинтилляцией, которые можно разглядеть в микроскоп. Так впервые отдельные атомы (альфа-частицы рассматривались как атомы гелия) были зарегистрированы наглядно. Рассматривая экран, окрашенный подобными веществами, исследователи могли точно установить, в каком месте на него попадали альфа-частицы, и таким способом определяли их траектории. Но чтобы увидеть слабые, эфемерные сцинтилляции, Гейгеру приходилось сидеть в полной темноте по крайней мере минут пятнадцать, чтобы его зрение смогло адаптироваться. На это утомительное ожидание уходило много времени.
Оборудование, которое использовал Гейгер для измерения рассеивания, с современной точки зрения было очень простым. В небольшой металлический сосуд помещали крошечную бусинку радия – крайне радиоактивного элемента, почти непрерывно испускающего альфа-частицы. Сосуд был снабжен специальными отверстиями, которые позволяли пропускать тонкий луч альфа-частиц вдоль стеклянной трубки в четыре фута длиной. Из трубки был выкачан весь воздух, чтобы альфа-частицы не вступали во взаимодействие с его молекулами. С упомянутой трубкой была соединена еще одна, похожая на нее, также без воздуха, по которой альфа-частицы проходили прежде, чем попасть на экран, покрытый сульфидом цинка. Глядя на экран через микроскоп, Гейгер наблюдал вспышки и определял их положение. Практически без исключений вспышки происходили в одном и том же месте. Затем Гейгер поместил тонкие листы металлической фольги между первой и второй стеклянными трубками. Теперь вспышки начали «плясать» по всему экрану.
Гейгер дал объяснение описанному феномену в докладе, представленном на заседании Лондонского королевского общества в июне 1908 года. Бо́льшая часть альфа-частиц проходила сквозь фольгу, но время от времени некоторые частицы отражались ею. Подобно бильярдному шару, катящемуся по столу от удара другого шара, альфа-частица отлетала назад. Чем толще был слой фольги, тем большее число альфа-частиц отражалось и отлетало назад под бо́льшим углом к исходному направлению. Совершенно очевидно, что эти альфа-частицы, проходя сквозь толстую фольгу, сталкивались с несколькими атомами. Кроме того, фольга, изготовленная из более тяжелых элементов (например, золота), рассеивала альфа-частицы сильнее, нежели фольга, изготовленная из более легких элементов (например, алюминия).