KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Научпоп » Н. Белов - Алексей Васильевич Шубников (1887—1970)

Н. Белов - Алексей Васильевич Шубников (1887—1970)

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Н. Белов, "Алексей Васильевич Шубников (1887—1970)" бесплатно, без регистрации.
Перейти на страницу:

Генетически работа А. В. Шубникова [247] связана с небольшой книжкой Г. В. Вульфа «Симметрия и ее проявление в природе», в которой без определения симметрии подобия большое внимание уделено симметрии растений. О том, как работа А. В. Шубникова была встречена научной общественностью, И. И. Шафрановский пишет: «В августе 1960 г. в Кембридже проходил 5-й Международный конгресс кристаллографов, участником которого был А. В. Шубников. Журнал „Кристаллография" посвятил конгрессу специальный выпуск, открывающийся статьей А. В. Шубникова „Симметрия подобия". Алексей Васильевич придавал большое' значение этой долго им вынашиваемой и тщательно оформленной работе. Его слегка опечалило то, что высказанная им идея о совершенно новом аспекте симметрии, имеющем повсеместное распространение в природе, не встретила тогда широкого отклика и достойной оценки со стороны участников конгресса» [Л. 57, с. 394]. Следует сказать, что эту идею сразу же взяли на вооружение кишиневские геометры, фактически завершившие всю теорию симметрии подобия.

Свою теорию симметрии подобия А. В. Шубников основывает на утверждении, что в рамках симметрии подобия равными считаются не только действительно равные фигуры, но и все подобные им. Им вводятся все основные виды операций, осуществляемых в рамках симметрии подобия.

Рис. 2. Фигура, имеющая симметрию подобия.


Статья А. В. Шубникова послужила основой для формирования целого раздела теории симметрии, базирующегося на объединении ортогональных и подобных преобразований. При отображении подобия параллельность и углы сохраняются неизменными. Как и множество ортогональных, «подобные» преобразования пространства (и плоскости) образуют группу, являющуюся подгруппой группы аффинных преобразований пространства (рис. 2).

Поскольку весь этот раздел теории симметрии связан с именем А. В. Шубникова, кратко рассмотрим пути его дальнейшего развития. Теория симметрии подобия и вывод групп развивались исследователями Кишиневской школы с 1963 по 1970 г. На основе связи групп симметрии подобия с группами направленных стержней, впевые отмеченной в работе Э. И. Галярского и А. М. Заморзаева, выведены двумерные группы симметрии и антисимметрии подобия, расширенные впоследствии до цветной симметрии и различного рода антисимметрии подобия. В 1967 г. вывод двумерных групп был расширен до вывода конических (с особенной плоскостью), а затем трехмерных групп, базирующихся на аналогии между группами цветной симметрии и группами симметрии подобия.

На примере теории симметрии подобия выпукло обрисовывается вклад А. В. Шубникова в теорию симметрии. В процессе развития теории симметрии подобия идеи А. В. Шубникова пересекались с его же идеями по антисимметрии, теории предельных и некристаллографических групп.

В работе А. В. Шубникова [158] намечено развитие теории ортогональной симметрии и в направлении гомологии, т. е. эквиаффинных преобразований. В самом деле, при анализе пар многогранников Л. Пастера автор вводит «в качестве особого симметричного преобразования косое отражение в плоскости и в качестве нового элемента симметрии косую плоскость симметрии» [158, с. 5]. Ревизуя само понятие равенства, А. В. Шубников определяет понятие «косого поворота... вокруг косой оси...» [158, с. 6]. Иными словами, автор вводит в рассмотрение принципы, лежащие в основе гомологии. По словам В. И. Михеева: «Важно заметить, что А. В. Шубников указывает на тесную связь косых элементов симметрии с однородными деформациями Е. С. Федорова...

Значение указанных работ А. В. Шубникова очень велико. Главное их достоинство в том, что они намечают несколько различных путей дальнейшего развития учения о симметрии. Один из этих путей совпадает с тем, который был принят Е. С. Федоровым и продолжен К. Виола...

Косые оси и плоскости симметрии были найдены А. В. Шубниковым попутно при решении проблемы о перспективах развития учения о симметрии, и сами они не были предметом специального исследования. Вероятно, этим и объясняется, что в работах не рассмотрены вопросы сложения косых плоскостей и осей симметрии, не упоминается о косых эллиптических осях симметрии или эллиптических осях гомологии».[* Михеев В. И. Гомология кристаллов. Л.: Гостоптехиздат, 1961, с. 32.]

Отметим, что в этой же работе А. В. Шубникова [158] упоминается о новом развитии понятия симметричности, которое в современной терминологии принято называть кратной антисимметрией. Иначе невозможно интерпретировать следующее высказывание автора: «Что касается... принципа сочетания альтернатив — не обязательно только двух, но и многих альтернатив, то он наверняка найдет себе применение для описания самых разнообразных множеств (многообразий) природных материальных образований» [158, с. 10].

На основе многогранников Л. Пастера в этой же работе фактически впервые возникает понятие «простой и кратной антисимметрии стереоэдров».

В заключение этого раздела приведем слова А. В. Шубникова: «Могут существовать самые разнообразные трактовки симметрии. Целесообразность той или иной из них определяется практикой, назначением для истолкования явлений природы, то есть относительных движений в широком философском смысле. Какой бы трактовки симметрии мы бы ни придерживались, одно остается обязательным: нельзя рассматривать симметрию, без,- ее антипода — диссимметрии.. В симметрии отражается та сторона явлений, которая соответствует покою, а в диссимметрии — та их сторона, которая отвечает движению. Нет максимальной и минимальной симметрии, как нет абсолютного покоя и абсолютного движения.

Единое понятие симметрии—диссимметрии неисчерпаемо» [151, с. 163].

С 1953 по 1956 г., А. В. Шубников неоднократно возвращался к анализу проблем, связанных с гомологией, уточняя и детализируя свою точку зрения на этот вопрос. Он утверждал: «В основе учения о симметрии при любом его аспекте лежит представление о равенстве частей фигуры и об одинаковости их взаимного расположения. В природных индивидах — растениях, животных, кристаллах — роль равных и одинаково расположенных частей фигуры нередко играют части одинаковой формы, но разной величины, то есть части подобные. При кристаллизации они образуются всегда в тех случаях, когда процесс кристаллизации просходит ритмически (кольца Лизеганга, спирали роста, ритмические сферолиты). Развитие учения о симметрии подобия должно стать, по нашему мнению, одной из важных задач современной теоретической кристаллографии» [244, с. 7].


Геометрические работы

Прежде чем рассматривать работы А. В. Шубникова в области геометрии, приведем высказывания Б. Н. Делоне, затрагивающие интересующий нас вопрос: «...я узнал, что в своей работе еще 1916 г. „К вопросу о строении кристаллов" Алексей Васильевич показал, что есть 11, и только 11, комбинаторно разных разбиений плоскости на то, что он называл в этой работе „планатомы". Это разбиение дуально с разбиением на „планигоны“. В 1931 году Ф. Лавэс заново открыл этот факт, то есть число И (для планигонов), и только в сноске к своей работе отмечает, что он узнал, что этот геометрический факт был уже 15 лет перед тем открыт А. В. Шубниковым.

Существование такой работы А. В. Шубникова меня тогда озадачило. Да ведь он не только блестящий экспериментатор и исследователь природы, а и математик» [Л. 57, с. 383].

Круг проблем, связанных с заполнением плоскости и пространства, очерчен в двух статьях А. В. Шубникова [15, 25].

Этот вопрос имеет давнюю историю. В 1611 г. гениальный Кеплер в небольшом трактате «О шестиугольном снеге» задался вопросом о первопричине образования звездчатой шестиугольной формы снежных кристалликов. Заимствовав у пчел форму ромбододекаэдра, И. Кеплер писал: «Итак, мы имеем дело с известной геометрической фигурой, наиболее правильной, заполняющей пространство так же, как, например, шестиугольник, четырехугольник, треугольник заполняют плоскости».[* Цит. по кн.: Шафрановский И. И. Кристаллографические представления И. Кеплера и его трактат «О шестиугольном снеге». М.: Наука, 1971, с. 4.] Разбор различных возможных шаровых упаковок привел его к плотнейшей шаровой кубической упаковке (табл. 6).

Другая плотнейшая, а именно гексагональная, упаковка открыта В. Барлоу лишь в конце XIX в. Исходя из шаровых укладок. Кеплер выводит три идеальных параллелоэдра: ромбододекаэдр, гексагональную призму с пинакоидом и куб. Кубооктаэдр, известный еще строителям Софийского собора в Константинополе и положенный в основу при проектировании центрального купола, был введен в кристаллографию Е. С. Федоровым, а И. Кеплеру оставался неизвестным.

Интересные соображения, связанные с упаковкой идентичных частиц, высказывал И. Ньютон в «Оптике», М. В. Ломоносов в работе «О рождении и природе селитры». Для полноты картины в список приверженцев решетчатого строения кристаллов XVII—XVIII вв. следует добавить имена Вестфельда и Бергмана, полагавших, что кристаллы кальцита построены из одинаковых крошечных ромбоэдров, примыкающих друг к другу своими гранями и заполняющих пространство без промежутков.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*