KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Математика » Франсиско Мартин Касальдеррей - Мир математики. Том 16. Обман чувств. Наука о перспективе

Франсиско Мартин Касальдеррей - Мир математики. Том 16. Обман чувств. Наука о перспективе

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Франсиско Мартин Касальдеррей, "Мир математики. Том 16. Обман чувств. Наука о перспективе" бесплатно, без регистрации.
Перейти на страницу:

Так как додекаэдр является двойственным икосаэдру, он также обладает этим свойством. Единственное отличие заключается в том, что вместо противолежащих ребер в этом случае нужно соединить центры граней.



Три прямоугольника золотого сечения, вписанные в икосаэдр.

(источник: FMC)

* * *

В эту эпоху в работах художников помимо правильных и полуправильных, или архимедовых, многогранников начинают появляться другие геометрические фигуры — конусы, призмы и ограненные сферы. В некотором смысле они предвосхитили понятие предела, которое появилось лишь несколько столетий спустя. Ограненные сферы, которые встречаются в книге «О божественной пропорции» и в инкрустациях Фра Джованни да Верона, можно вписать в идеальную сферу, которая, в свою очередь, будет описывать все ограненные сферы одного радиуса.

Один из многогранников, так называемый мазоччо, который часто встречается в работах Паоло Уччелло, стал своеобразным символом перспективы. Изначально это был флорентийский головной убор XV века, который надевался поверх отреза легкой ткани, обмотанного вокруг головы. По форме он напоминал тор — геометрическое тело в форме бублика.



Джованни да Верона. Инкрустация по дереву с изображением мазоччо (конец XV века).


Тор можно представить несколькими способами. Проще всего рассматривать его как поверхность вращения окружности, центр которой перемещается вдоль другой, большей окружности, перпендикулярной первой. Его также можно представить как вытянутый цилиндр из пластичного материала, основания которого склеены. Если мы разобьем поверхность тора на грани, чтобы построить его модель, например из картона, то получим примерно такое изображение:



Ограненный мазоччо.

(источник: FMC)

* * *

МНОГОГРАННИК, НАПОЛНЕННЫЙ ВОДОЙ

Лука Пачоли поддерживал дружеские отношения со многими художниками, и те часто изображали его на своих картинах. Выше приведен портрет кисти Якопо де Барбари, на котором изображен Пачоли, читающий лекцию по математике. Ученик предположительно Гвидобальдо да Монтефельтро, будущий герцог Урбинский. На столе перед Пачоли лежат «Начала» Евклида. Он читает лекцию по геометрии и, судя по изображению на доске, рассказывает о pons asinorum — «мосте ослов». Так раньше называлась теорема из «Начал», согласно которой углы, противоположные равным сторонам равнобедренного треугольника, равны. Некоторые исследователи считают, что название pons asinorum произошло из-за того, что построенные фигуры по форме напоминали мост. Более правдоподобной выглядит версия, согласно которой это название означало, что теорема была непреодолимой для несведущих учеников и все дальнейшее содержание «Начал» было им непонятно. Книга, изображенная справа, — это «Сумма арифметики». На ней находится додекаэдр, а вверху изображен многогранник со стеклянными гранями, наполовину наполненный водой, подвешенный к потолку на золотой цепочке. В нем отражается окно, сквозь которое слева направо падает луч света. Этот многогранник — ромбокубоктаэдр, имеющий 18 квадратных и 8 треугольных граней.



Портрет Луки Пачоли кисти Якопо де Барбари. Национальный музей и галерея Каподимонте, Неаполь.



Многогранник Пачоли.

* * *

Для построения этой фигуры малая окружность была разделена на восемь частей, большая — на 24 части. Мазоччо, таким образом, представлял собой фигуру, состоящую из 24 «долек», каждая из которых является наклонной призмой. Основаниями этих призм являются правильные восьмиугольники, равные между собой.

На второй мозаике, приведенной выше, на нижней полке шкафа можно заметить подобный мазоччо. Однако, как мы покажем далее, в то время эта фигура изображалась не только на мозаиках. Так, ее можно увидеть в так называемой «Зеленой аркаде» флорентийской церкви Санта-Мария-Новелла. Ее люнету Уччелло украсил фреской «Всемирный потоп». В хаотичной композиции, где, как кажется, ни один персонаж не связан с остальными и где доминирует глубокая центральная перспектива, можно увидеть два мазоччо. Один из них надет на шею одного из персонажей, который с дубиной в руке сражается с другим у нижней ступени лестницы. Второй мазоччо на голове девушки, сидящей спиной к зрителю, голова которой повернута в профиль. Неизвестно, какое значение придавал Уччелло этим мазоччо. Возможно, он не наделял их никаким особым смыслом.

В серии из трех картин Уччелло «Битва при Сан-Романо», которые хранятся в галерее Уфицци во Флоренции, в Лондонской национальной галерее и в парижском Лувре, также можно увидеть несколько мазоччо.



Фреска «Всемирный потоп» Паоло Уччелло, изображенная на стене «Зеленой аркады» флорентийской церкви Санта-Мария-Новелла.

(фотография: FMC)

* * *

О, КАК ПРЕКРАСНА ЭТА ПЕРСПЕКТИВА!

Флорентийский художник Паоло Уччелло (настоящее имя Паоло ди Доно, 1397–1475) в своем творчестве достиг вершин использования перспективы. Он вместе с Донателло работал подмастерьем в школе Гиберти, когда тот создал северные ворота флорентийского баптистерия. В 1416 году он переехал в Венецию, чтобы начать работу над реставрацией мозаики на фасаде собора Святого Марка, разрушенной при пожаре, и мраморной мозаики пола. В 1430 году, вернувшись во Флоренцию, он увидел фрески Мазаччо в капелле Бранкаччи и был столь очарован умелым использованием перспективы, что подробно изучил ее и сделал характерной чертой своего стиля.

В 1436 году ему было поручено изобразить на стене церкви Санта-Мария-дель-Фьоре фреску, которая должна была стать своеобразным надгробным памятником военачальнику Джону Хоквуду. Применив правила перспективы, Уччелло изобразил Хоквуда верхом на коне. В 1440-е годы он создал фрески для «Зеленой аркады» флорентийской церкви Санта-Мария-Новелла, которые в настоящее время находятся не в лучшем состоянии. Однако лучше всего его страсть к перспективе отражают три большие картины серии «Битва при Сан-Романо», где художник мастерски изобразил батальную сцену на фоне. В одной из этих картин упавшие на землю копья напоминают оси абсцисс и ординат декартовой системы координат, которую Декарт описал в своей «Геометрии» лишь 200 лет спустя. Перспектива стала настоящей навязчивой идеей Уччелло. Вазари писал:

«Донателло, который был его близким другом, часто говорил ему: «Паоло, твоя перспектива заставляет тебя оставить истинное в погоне за неточным». Он говорил так потому, что Паоло каждый день показывал ему мазоччо, изображенные в перспективе, и архитектурные украшения в виде пирамид, выполненные с величайшим старанием».

В 1452 году, когда Уччелло было уже больше 54 лет, он женился на Томмазе Малифици, которая родила ему двоих детей, Донато и Антонию. Дети Уччелло также посвятили свою жизнь живописи. Вазари не без доли злого умысла в своих «Жизнеописаниях» пишет, что Уччелло проводил ночи напролет за письменным столом, изучая перспективу, а когда жена звала его спать, он отвечал: «О, как прекрасна эта перспектива!»



Портрет Паоло Уччелло.

(фотография: FMC)

* * *



Увеличенные изображения мазоччо на картине из серии «Битва при Сан-Романо», хранящейся в Галерее Уффици.


В завершение этого раздела скажем несколько слов об особенном многограннике Кеплера, который называется звездчатым многогранником. Это большой звездчатый додекаэдр, образованный двенадцатью пятиконечными звездами. В каждой вершине этого многогранника сходится пять звезд. Кеплер рассмотрел его лишь в 1619 году в книге «Гармония мира», однако Уччелло изобразил эту фигуру на полу собора Святого Марка в Венеции намного раньше, в конце периода кватроченто.



Мозаика Паоло Уччелло на полу собора Святого Марка в Венеции, на которой изображен большой звездчатый додекаэдр.

(источник: АМА)


От перспективы к виртуальной реальности

В последней трети кватроченто техника перспективы использовалась во всех флорентийских художественных мастерских и распространилась по всей Италии. Однако почти с самого начала возник парадокс: перспектива, созданная для достоверного изображения «реальности», стала применяться совершенно иначе — для реалистичного изображения чего-то несуществующего. Можно сказать, что так появилась виртуальная реальность.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*