KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Ричард Фейнман - 5. Электричество и магнетизм

Ричард Фейнман - 5. Электричество и магнетизм

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн "Ричард Фейнман - 5. Электричество и магнетизм". Жанр: Физика издательство неизвестно, год неизвестен.
Перейти на страницу:

Далее,

(2.52)

что может, вообще говоря, быть любым числом. Это скаляр­ное поле.

Вы видите, что скобок можно не ставить, а вместо этого писать, не рискуя ошибиться:

(2.53)

Можно рассматривать С2 как новый оператор. Это скаляр­ный оператор. Так как он в физике встречается часто, ему дали особое имя — лапласиан.

(2.54)

Раз оператор лапласиана —оператор скалярный, он может действовать и на вектор. Под этим мы подразумеваем, что он применяется к каждой компоненте вектора

Рассмотрим еще одну возможность: СX(СX h) [(д) в списке (2.45)]. Ротор от ротора можно написать иначе, если исполь­зовать векторное равенство (2.6)

АX(ВXС) = В(А·С)-С(А·В). (2.55)

Заменим в этой формуле А и В оператором у и положим C=h. Получится

СX(СXh) = С(Сb)-h(С·С)...???

Погодите-ка! Здесь что-то не так. Как и положено, первые два члена — векторы (операторы утолили свою жажду), но послед­ний член совсем не такой. Он все еще оператор. Ошибка в том, что мы не были осторожны и не выдержали нужного порядка членов. Вернувшись обратно, вы увидите, что (2.55) можно с равным успехом записать в виде

АX(ВXС) = В(А·С) -(А·В)С. (2.56)

Такой порядок членов выглядит уже лучше. Сделаем нашу под­становку в (2.56). Получится

СX (СXh) = С (Сh)-( С·С)h. (2.57)

С этой формулой уже все в порядке. Она действительно пра­вильна, в чем вы можете убедиться, расписав компоненты. По­следний член — это лапласиан, так что с равным успехом мож­но написать

СX (СXh) = С(С·h)- С2h. (2.58)

Из нашего списка (2.45) двойных С мы разобрали все комби­нации, кроме (в), С(С·h). В ней есть смысл, это — векторное поле, но больше сказать о ней нечего. Это просто векторное поле, которое может случайно возникнуть в каком-нибудь рас­чете.

Удобно будет все наши рассуждения свести теперь в таблицу:

(2.59)

Вы могли заметить, что мы не пытались изобрести новый век­торный оператор СХС. Понимаете, почему?

§ 8. Подвохи

Мы применили наши знания обычной векторной алгебры к алгебре оператора y Здесь нужно быть осторожным, иначе легко напутать. Нужно упомянуть о двух подвохах (впрочем, в нашем курсе они не встретятся). Что можете вы сказать о сле­дующем выражении, куда входят две скалярные функции ш и j (фи):

Вы можете подумать, что это нуль, потому что оно похоже на

(Аa)X(Аb),

а это всегда равно нулю (векторное произведение двух одина­ковых векторов АXА всегда нуль). Но в нашем примере два оператора С отнюдь не одинаковы! Первый действует на одну функцию, ш, а второй — на другую, j. И хотя мы изображаем их одним и тем же значком у, они все же должны рассматри­ваться как разные операторы. Направление Сш зависит от функ­ции ш, а направление Сj — от функции j, так что они не обя­заны быть параллельными:

(Сш)X(Сj)№0 (в общем случае).

К счастью, к таким выражениям мы прибегать не будем. (Но сказанное нами не меняет того факта, что СjXСm =0 в любом скалярном поле: здесь обе Сдействуют на одну и ту же функцию.) Подвох номер два (он тоже в нашем курсе не встретится): правила, которые мы здесь наметили, выглядят просто и красиво только в прямоугольных координатах. Например, если мы хо­тим написать x-компоненту выражения С2h, то сразу пишем

(2.60)

Ио это выражение не годится, если мы ищем радиальную ком­поненту С2h. Она не равна С2hr. Дело в том, что в алгебре век­торов все их направления полностью определены. А когда мы имеем дело с векторными полями, то их направления в разных местах различны. Когда мы пробуем описать векторное поле, например, в полярных координатах, то «радиальное» направле­ние меняется от точки к точке. И начав дифференцировать ком­поненты, вы запросто можете попасть в беду. Даже в постоян­ном векторном поле радиальная компонента от точки к точке меняется.

Обычно безопаснее и проще всего держаться прямоугольных координат. Но стоит упомянуть и одно исключение: поскольку лапласиан С2 есть скаляр, то можно писать его в любой системе координат (скажем, в полярных координатах). Но так как это дифференциальный оператор, то применять его надо только к векторам с фиксированным направлением компонент, т. е. к заданным в прямоугольных координатах. Итак, расписывая наши векторные дифференциальные уравнения покомпонентно, мы будем предварительно выражать все наши векторные поля через их х-, у-, z-компоненты.

* В наших обозначениях выражение (а, b, с) представляет вектор с компонентами а, b, с. Если вам нравится пользоваться единичными векторами i, j и k, то можно написать

* Мы рассматриваем h как физическую величину, зависящую от по­ложения в пространстве, а не как заданную математически функцию трех переменных. Когда h «дифференцируется» по х, у и z или по х', у' и z', то математическое выражение для h должно быть предварительно выраже­но в виде функции соответствующих переменных, Поэтому в новой си­стеме координат мы не отмечаем h штрихом.

Глава 3

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ВЕКТОРОВ

§1.Векторные интег­ралы; криволи­нейный интеграл от ▽ш

§2.Поток векторного поля

§З. Поток из куба; теорема Гаусса

§4.Теплопроводность; уравнение диффу­зии

§5.Циркуляция векторного поля

§6. Циркуляция по квадрату; теорема Стокса

§7. Поля без роторов и поля без дивер­генций

§8.Итоги

§ 1. Векторные интегралы;

криволинейный интеграл от Сш

В предыдущей главе мы видели, что брать производные от поля можно по-разному. Одни приводят к векторным полям; другие — к скалярным. Хотя формул было выведено до­вольно много, все их можно подытожить одним правилом: операторы д/дх, д/ду и д/dz суть три компоненты векторного оператора у. Сейчас нам хотелось бы лучше разобраться в значении производных поля. Тогда мы легче почувствуем смысл векторных уравнений поля.

Мы уже говорили о смысле операции градиен­та (С на скаляр). Обратимся теперь к смыслу опе­раций вычисления дивергенции (расходимости) и ротора (вихря). Толкование этих величин лучше всего сделать на языке векторных интегралов и уравнений, связывающих эти интегралы. Но уравнения эти, к несчастью, нельзя вывести из векторной алгебры при помощи каких-либо легких подстановок, так что вам придется учить их как что-то новое. Одна из этих инте­гральных формул практически тривиальна, а другие две — нет. Мы выведем их и поясним их смысл. Эти формулы фактически являются математическими теоремами. Они полезны не только для толкования смысла и содержания понятий дивергенции и ротора, но и при раз­работке общих физических теорий. Для теории полей эти математические теоремы — все равно, что теорема о сохранении энергии для меха­ники частиц. Подобные теоремы общего харак­тера очень важны для более глубокого пони­мания физики. Но вы увидите, что, за немногими простыми исключениями, они мало что дают для решения задач. К счастью, как

раз в начале нашего курса многие простые задачи будут решаться именно этими тремя интегральными формулами.

Фиг. 3.1. Иллюстрация уравнения (3.1).

Вектор Сш вычисляется на линей­ном элементе ds.

Позже, однако, когда задачи станут потруднее, этими простыми методами мы больше обойтись не сможем.

Мы начнем с той интегральной формулы, куда входит гра­диент. Мысль, которая содержится в ней, очень проста: раз градиент есть быстрота изменения величины поля, то интеграл от этой быстроты даст нам общее изменение поля. Пусть у нас есть скалярное поле ш(x, у, z). В двух произвольных точках (1) и (2) функция я|з имеет соответственно значения ш(l) и ш(2). [Используется такое удобное обозначение: (2) означает точку (x2, y2, z2), а ш(2) это то же самое, что ш(x2, y2, z2).] Если Г (гамма) — произвольная кривая, соединяющая (1) и (2) (фиг. 3.1), то справедлива

Т Е О Р Е М А 1

(3.1)

Интеграл, стоящий здесь, это криволинейный интеграл от (1) до (2) вдоль кривой Г от скалярного произведения вектора Сш) на другой вектор, ds, являющийся бесконечно малым элемен­том дуги кривой Г [направленной от (1) к (2)].

Напомним, что мы понимаем под криволинейным интегралом. Рассмотрим скалярную функцию f(x, y, z) и кривую Г, соеди­няющую две точки (1) и (2). Отметим на кривой множество то­чек и соединим их хордами, как на фиг. 3.2. Длина i-й хорды равна Dsi,-, где i пробегает значения 1, 2, 3, .... Под криволиней­ным интегралом

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*