Ричард Фейнман - 3a. Излучение. Волны. Кванты
§ 5. Тормозное излучение
Мы кратко расскажем еще об одном интересном эффекте, связанном с излучением быстродвижущейся частицы. По существу, этот процесс очень похож на только что описанное излучение. Предположим, что имеется материал, содержащий заряженные частицы и мимо пролетает очень быстрый электрон (фиг. 34.9). Тогда под действием электрического поля ядра электрон будет притягиваться и ускоряться, и на траектории появится изгиб. Чему будет равно излучение электрического поля в направлении С, если скорость электрона близка к скорости света? Вспомним наше правило: мы должны взять истинное движение, перенести его назад со скоростью с, и тогда мы получим кривую, производная которой определяет электрическое поле. Электрон примчался к нам со скоростью v, следовательно, при переносе получается обратное движение и вся траектория сожмется во столько раз, во сколько с—v меньше с. Таким образом, при 1-v/c<<1 кривизна кажущейся траектории в точке В' очень велика, и, взяв вторую производную, мы получаем мощное излучение в направлении движения. Следовательно, при прохождении через среду электроны большой энергии излучают вперед. Это явление называется тормозным излучением. На практике синхротроны используются не столько для получения электронов большой
Фиг. 34.9. Быстрый электрон, пролетающий вблизи от ядра, излучает в направлении своего движения.
энергии (возможно, если бы их лучше умели выводить из синхротрона, мы бы этого не стали говорить), сколько для рождения энергичных фотонов, или у~квантов, в процессе прохождения электронов через плотные мишени, где они испускают тормозное излучение.
§ 6. Эффект Допплера
Рассмотрим теперь ряд других эффектов, связанных с движением источника. Пусть источник представляет собой покоящийся атом, колеблющийся со своей обычной частотой ш0. Частота наблюдаемого света тогда будет равна w0. Но возьмем другой пример: пусть такой же атом колеблется с частотой w1 и в то же время весь атом, весь осциллятор как целое движется со скоростью v по направлению к наблюдателю. Тогда истинное движение в пространстве будет таким, как изображено на фиг. 34.10,а. Используем наш обычный прием и добавим ст, т. е. сместим всю кривую назад и получим колебания, представленные на фиг. 34.10,6. За промежуток времени т осциллятор проходит расстояние vт, а на графике с осями х' и у' соответствующее расстояние равно (с-v)t. Таким образом, число колебаний с частотой ш1, которое укладывалось в интервал Ат, на новом чертеже укладывается теперь уже в интервал Dt = (1-v/c) Dt; осцилляции сжимаются, и, когда новая кривая будет двигаться мимо нас со скоростью с, мы увидим свет более высокой частоты, увеличенной за счет
фактора сокращения (1-v/c). Итак, наблюдаемая частота равна
(34.10)
Можно, конечно, объяснить этот эффект и другими способами. Пусть, например, тот же атом испускает не синусоидальную волну, а короткие импульсы (пип, пип, пип, пип) с некоторой частотой ш1. С какой частотой мы будем их воспринимать? Первый импульс к нам придет спустя определенное время, а второй импульс придет уже через более короткое время, потому что атом за это время успел к нам приблизиться. Следовательно, промежуток времени между сигналами «пип» сократился за счет движения атома. Анализируя эту картину с геометрической точки зрения, мы придем к выводу, что частота импульсов увеличивается в 1/(1-v/c) раз.
Фиг, 34.10. Движение осциллятора в плоскости х—z и в плоскости x'—t.
Будет ли наблюдаться частота w= w0/(1-v/c), если атом с собственной частотой ш0 движется со скоростью v к наблюдателю? Нет. Нам хорошо известно, что собственная частота движущегося атома w1 и частота покоящегося атома w0 — не одно и то же из-за релятивистского замедления хода времени. Так что если w0 — собственная частота покоящегося атома, то частота движущегося атома будет равна
(34.11)
Поэтому наблюдаемая частота w окончательно равна
(34.12)
Изменение частоты, возникающее в таком случае, называется эффектом Допплера: если излучающий объект движется на нас, излучаемый им свет кажется более синим, а если он движется от нас, свет становится более красным.
Приведем еще два других вывода этого интересного и важного результата. Пусть теперь покоящийся источник излучает с частотой w0, а наблюдатель движется со скоростью v к источнику. За время t наблюдатель сдвинется на новое расстояние vt от того места, где он был при t = 0. Сколько радиан фазы пройдет перед наблюдателем? Прежде всего, как и мимо любой фиксированной точки, пройдет ю0t, а также некоторая добавка за счет движения источника, а именно vtk0 (это есть число радиан на метр, умноженное на расстояние).
Отсюда число радиан за единицу времени, или наблюдаемая частота, равно w1=w0+k0v. Весь этот вывод был произведен с точки зрения покоящегося наблюдателя; посмотрим, что увидит движущийся наблюдатель. Здесь мы снова должны учесть разницу в течении времени для наблюдателя в покое и движении, а это значит, что мы должны разделить результат на Ц( 1-v2/с2). Итак, пусть k0 есть волновое число (количество радиан на метр в направлении движения), а со0 — частота; тогда частота, регистрируемая движущимся наблюдателем, равна
(34.13)
Для света мы знаем, что k0 = w0/c. Следовательно, в рассматриваемом примере искомое соотношение имеет вид
(34.14)
и, казалось бы, не похоже на (34.12)!
Отличается ли частота, наблюдаемая при нашем движении к источнику, от частоты, наблюдаемой при движении источника к нам? Конечно, нет! Теория относительности утверждает, что обе частоты должны быть в точности равны. Если бы мы были достаточно математически подготовлены, то могли бы убедиться, что оба математических выражения в точности равны! В действительности требование равенства обоих выражений часто используется для вывода релятивистского замедления времени, потому что без квадратных корней равенство сразу нарушается.
Раз уж мы начали говорить о теории относительности, приведем еще и третий способ доказательства, который покажется, пожалуй, более общим. (Суть дела остается прежней, ибо не играет роли, каким способом получен результат!) В теории относительности имеется связь между положением в пространстве и временем, определяемым одним наблюдателем, и положением и временем, определяемым другим наблюдателем, движущимся относительно первого. Мы уже выписывали эти соотношения (гл. 16). Они представляют собой преобразования Лоренца, прямые и обратные:
(34.15)
Для неподвижного наблюдателя волна имеет вид cos(cot-kx); все гребни, впадины и нули описываются этой формой. А как будет выглядеть та же самая физическая волна для движущегося наблюдателя? Там, где поле равно нулю, любой наблюдатель при измерении получит нуль; это есть релятивистский инвариант. Следовательно, форма волны не меняется, нужно только написать ее в системе отсчета движущегося наблюдателя:
Произведя перегруппировку членов, получим
(34.16)
Мы снова получим волну в виде косинуса с частотой w' в качестве коэффициента при t' и некоторой другой константой k' — коэффициентом при х'. Назовем k' (или число колебаний на 1 м) волновым числом для второго наблюдателя. Таким образом, движущийся наблюдатель отметит другую частоту и другое волновое число, определяемые формулами
(34.17)
(34.18)
Легко видеть, что (34.17) совпадает с формулой (34.13), полученной нами на основании чисто физических рассуждений.
§ 7. Четырехвектор (w, k)
Соотношения (34.17) и (34.18) обладают весьма интересным свойством: новая частота w' линейно связана со старой частотой w и старым волновым числом k, а новое волновое число представляется в виде комбинации старого волнового числа и частоты. Далее, волновое число есть скорость изменения фазы с расстоянием, а частота — скорость изменения фазы со временем, и сами соотношения обнаруживают глубокую аналогию с преобразованиями Лоренца для координаты и времени: если со сопоставить с t, a k с х/с2, то новое w' сопоставляется с t', a k' — с координатой х'/с2. Иначе говоря, при преобразовании Лоренца w и k изменяются так же, как t и х. Эти величины w и k составляют так называемый четырехвектор. Четырехкомпонентная величина, преобразующаяся как время и координаты, и есть четырехвектор. Здесь все правильно, за исключением одного — четырехвектор имеет четыре компоненты, а у нас фигурируют только две! Как уже говорилось, со и k подобны времени и одной координате пространства; для введения двух остальных координат надо изучить распространение света в трехмерном пространстве.