Александр Китайгородский - Физика для всех. Движение. Теплота
При громком разговоре интенсивность звука вблизи собеседников будет примерно равна (мы воспользуемся числом, полученным выше) 2·10−7·3·104 = 0,006 эрг/(см2·с).
Ослабление звука с расстоянием
От звучащего инструмента звуковая волна распространяется, конечно, во все стороны.
Проведем мысленно около источника звука две сферы разных радиусов. Разумеется, энергия звука, проходящая через первую сферу, пройдет и через вторую шаровую поверхность. Если обозначить интенсивность звука через I, то энергию волны, проходящей через сферу, можно записать так: I·4πr2, так как 4πr2 – это площадь поверхности сферы радиуса r. Если энергия не потерялась по пути от первой сферы ко второй, то I1·4πr12 = I2·4πr22. Значит, интенсивности I2 и I2 волны на расстояниях r1 и r2 от источника звука относятся друг к другу обратно пропорционально квадратам расстояний. Так как интенсивность звука пропорциональна плотности энергии, то интенсивность, как и плотность энергии, пропорциональна квадрату амплитуды колебания. Отсюда следует, что амплитуды волны на расстояниях r1 и r2 от источника звука относятся друг к другу обратно пропорционально расстоянию. Интенсивность звука убывает обратно пропорционально квадрату расстояния от источника, а амплитуда обратно пропорциональна расстоянию в первой степени. На самом же деле звук убывает несколько быстрее, так как часть энергии поглощается по пути. Это происходит из-за того, что при колебании частиц среды некоторая часть энергии будет затрачена на преодоление вязкого трения. Однако эти потери относительно невелики, и главная причина того, что на далеком расстоянии мы слышим хуже, чем на близком, – это закон обратных квадратов.
Громко и тихо
Органы чувств человека во многих отношениях совершеннее самых лучших приборов. Это справедливо и для слуха. Мы способны воспринимать в виде звука волны с интенсивностью от 10−9 эрг/(см2·с) до 104 этих единиц интенсивности. Таким образом, сильнейший звук отличается от слабейшего в десять триллионов раз.
Что же представляет собой тишайший звук, который человек способен воспринять? Чуть слышный шорох создает на барабанной перепонке давление, равное 2·10−4 дин/см2, т.е. примерно двум десятимиллионным долям грамма. Лучшие микровесы не обладают такой чувствительностью, как ухо человека.
Если звук несет энергию больше 104 эрг/(см2·с), то человек уже не слышит звука, но испытывает болевое ощущение. Давление на барабанную перепонку достигает при этом 0,2 Г/см2. Ухо болезненно воспринимает именно волну давлений, т.е. быстро чередующиеся толчки сжатий и разрежений. Если же на указанную величину 0,2 Г возрастает постоянное давление воздуха, то ухо этого, разумеется, «не заметит». Нормальное атмосферное давление, равное примерно 1 кГ/см2, увеличится больше чем на 0,2 Г уже тогда, когда вы спуститесь со второго этажа на улицу.
Энергия волны, несущей сильный звук, в огромное число раз больше энергии волны, приносящей нам шепот и шорохи. Поэтому оценивать громкость звука величиной энергии практически очень неудобно. Представьте себе, что сотруднику, изыскивающему средства для борьбы с уличным шумом, надо сделать доклад на сессии Городского Совета и рассказать, насколько уменьшится шум, если заменить трамвайное движение троллейбусным или автобусным, если запретить подачу автоводителями сигналов на улице и т.д. Чтобы картина была наглядной, надо прибегнуть к плакатам. Как это принято при построении различного рода диаграмм, можно нарисовать на плакате столбики, высоты которых будут изображать степень шума. Но если определять громкость звука величиной энергии, то возникает непреодолимая трудность: тишина и шум отличаются друг от друга столь значительно, что изобразить их на одной диаграмме в одном масштабе гораздо труднее, чем нарисовать на одном плакате слона и муху в натуральную величину.
В подобных случаях в физике прибегают к так называемому логарифмическому масштабу.
Если какая-либо величина возрастает в 10, 100, 1000 и т.д. раз, то ее логарифм увеличивается на 1, на 2, на 3 и т.д. Значит, пользуясь не энергией звуковой волны, а логарифмами этой величины, всегда можно «уместить» на одном плакате шум авиационного мотора и жужжание комара.
Шкалу громкости создают следующим путем. Условно выбирают некоторый нулевой уровень громкости, равный 10−9 эрг/(см2·с). Звуков такой силы не слышит человек даже с самым изощренным слухом. Далее определяют, во сколько раз энергия интересующего нас звука E больше величины этого начального уровня E0, т.е. находят отношение E/E0.
Десятичный логарифм этого отношения и принят за меру громкости звука. Единица громкости носит название бел; впрочем обычно пользуются десятой долей, называвмой децибелом (дБ). Громкость в децибелах = 10 lg(E/E0).
О том, что такое децибел, можно судить по следующей таблице, указывающей величины громкости различных звуков на расстоянии в несколько метров от источника звука:
Шелест листьев 10 децибел Тихая улица 30 ~ Проезжающая автомашина 50 ~ Громкий разговор 70 ~ Шумная улица 90 ~ Самолет 100 ~
Таблица логарифмов позволит нам ясно представить децибел. Так, увеличение силы звука на 1 дБ соответствует возрастанию интенсивности звука в 100,1 = 1,26 раза, т.е. на 26 %. Увеличение интенсивности звука в два раза соответствует изменению громкости на 3 дБ, в пять раз – на 7 дБ, в десять раз – на 10 дБ.
Если расстояние от источника звука увеличится в два раза, то интенсивность звука упадет в четыре раза и сила звука упадет на 6 дБ. Предположим, мы находились на расстоянии метра от звучащей струны и отошли на расстояние в 10 м. Интенсивность волны, добирающейся до уха, упадет в 100 раз, а сила звука уменьшится на 20 дБ.
Ранее мы говорили об ограниченности диапазона слышимых частот. Дополнив эти сведения нашими знаниями о чувствительности уха к тихому и громкому звуку, можно изобразить ее диаграммой слышимости, типичной для нормального человека (рис. 121). По горизонтальной оси этого графика отложена частота звука, по вертикальной оси – энергия звука. На рисунке показаны порог слышимости и порог болевого ощущения. Область слуха лежит внутри области слышимости.
Неслышимые звуки
Частота звука в 20 000 Гц является пределом, выше которого человеческое ухо не воспринимает механические колебания среды. Различными способами можно создать колебания более высокой частоты, человек их не услышит, но приборы смогут записать. Впрочем, не только приборы фиксируют такие колебания. Многие животные – летучие мыши, пчелы, киты и дельфины (как видно, дело не в размерах живого существа) – способны воспринимать механические колебания с частотой вплоть до 100 000 Гц.
Сейчас удается получать колебания с частотой вплоть до миллиарда герц. Такие колебания, хотя они и неслышимы, называют ультразвуковыми, чтобы подтвердить их родственность звуку.
Ультразвуки наибольших частот получают при помощи кварцевых пластинок. Такие пластины вырезаются из монокристаллов кварца. Они обладают следующим интересным свойством: если к такой пластине приложить электрическое напряжение, она сожмется или растянется. Если же к пластине приложить переменное электрическое напряжение, то она будет попеременно сжиматься и расширяться, т.е. начнет колебаться.
Таким способом удается создавать мощные потоки ультразвука с интенсивностью несколько тысяч джоулей на 1 см2 в секунду. С этой цифрой интересно сравнить интенсивность слышимого звука. В непосредственной близости от стреляющего орудия она достигает всего лишь 0,005 Дж на 1 см2 в секунду.
Энергия ультразвука столь велика, что ее можно осязать. Если вы опустите руку в жидкость, совершающую ультразвуковые колебания, то почувствуете резкую боль.
Ультразвук способен совершать с веществом интересные превращения, поэтому он находит широкое применение в самых различных областях. Одно из таких превращений – дробление вещества. Если кусочек свинца или меди поместить в жидкость и подвергнуть его действию ультразвука, то металл крошится и образует тончайшую взвесь (или, как говорят, суспензию). Размельчение происходит в тех случаях, когда размеры частицы больше длины волны.