KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Александр Китайгородский - Физика для всех. Движение. Теплота

Александр Китайгородский - Физика для всех. Движение. Теплота

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Александр Китайгородский, "Физика для всех. Движение. Теплота" бесплатно, без регистрации.
Перейти на страницу:

Способность уха отличить ноту «до» рояля от той же ноты кларнета также основывается на разложении звука на гармонические составляющие, т.е. на основной тон и обертоны.

Кларнет принадлежит к большому классу духовых инструментов. Какие же колебания создают в этих случаях звуки определенной тональности и различных тембров? Это колебания воздушных столбов.

Музыкант, играющий на духовом инструменте, действует своим дыханием не как певец, а как гитарист рукой. Музыкант лишь приводит в колебание воздушный столб трубы. Что же касается тональности и тембра, то они устанавливаются музыкантом варьированием длины воздушного столба. В зависимости от длины воздушного столба воздух, находящийся в трубе, как и струна, приходит в колебания с определенными частотами.

Движущийся оркестр

Вы отдыхаете под деревом на обочине шоссе, а мимо проезжает грузовик с играющим оркестром. Или обратный случай – вы проезжаете те деревни, где в разгаре сельский праздник. Несколько музыкальных фраз проносятся мимо уха слушателя в обоих этих случаях. Не меняется ли звук, когда мы его слышим «на ходу»?

Займемся сначала музыкальными впечатлениями шофера, приближающегося к оркестру. Если автомашина движется навстречу звуковой волне, то число сгущений воздуха, доходящих за единицу времени до уха шофера, будет, конечно, больше, чем если бы машина стояла на месте.

Дело обстоит совершенно так же, как если бы навстречу водителю двигалась не звуковая волна, а цепочка бегущих спортсменов. Чтобы аналогия была полной, надо предположить, что бегуны сохраняют между собой одинаковую дистанцию (это длина волны) и бегут с неизменной скоростью.

Конечно, число бегунов, пробегающих в секунду мимо движущейся навстречу автомашины, будет больше, если автомашина движется. Относительная скорость машины и бегунов равна c + u. Во сколько раз возросла относительная скорость, во столько же раз возрастет и число спортсменов, пробегающих в единицу времени мимо автомашины.

Таким образом, отношение частоты νдв, измеряемой движущимся наблюдателем, к частоте ν, измеряемой покоящимся наблюдателем, равно отношению скоростей:



или в другой форме



Как показывает полученная формула, при сближении автомашины и оркестра частота звука повышается. Если машина идет со скоростью 70 км/ч, то частота звука повысится на 6 %.

Если машина удаляется от оркестра, то знак скорости u надо изменить на обратный. Частота звука будет при таком относительном движении понижаться. Таким образом, когда машина проносится мимо оркестра, то частота звука изменится на 2 × 6 = 12 %. Частота 100 Гц будет восприниматься как частота в 106 или 94 Гц, а ведь это – изменение частоты примерно на полтона. Даже не очень тренированный слушатель музыки ощутит это изменение.

Если u = −с, т.е. слушатель убегает от источника звука со скоростью звука, то νдв = 0, попросту говоря, звук не будет слышаться. Если скорость убегания превысит скорость звука, то слышимость появится и частота звука будет нарастать по мере возрастания скорости убегания. В формуле появится знак минус. Он не имеет непосредственного значения, так как частота – величина положительная. Однако само явление приобретает при появлении знака минус в некотором роде обратный характер. При убегании со скоростью, большей скорости звука, слушатель все время догоняет звук, сначала тот, который отправился в путешествие, скажем, секунду тому назад, потом тот, который ушел две секунды тому назад, далее уха путешественника достигнет звук, отправившийся в пространство три, четыре и т.д. секунд тому назад. Таким образом, все звуки будут прослушиваться в обратном порядке.

Вернемся к общей формуле для изменения частоты. Можно ли воспользоваться той же самой формулой для случая движущегося оркестра? Несомненно можно, но только надо правильно ею воспользоваться.

В формуле, которую мы вывели для случая движущегося наблюдателя, фигурируют две частоты – частота звука в среде, которая, естественно, совпадет с частотой звука, воспринимаемого покоящимся слушателем или излучаемого неподвижным инструментом, и частота звука νдв, равная числу колебаний в секунду, передаваемых движущимся телом воздуху или приходящих к движущемуся телу от воздуха.

Таким образом, если в первом примере излучаемая и воспринимаемая частоты являются соответственно частотой среды ν и частотой в движении νдв, то во втором примере, наоборот, воспринимаемая частота есть ν, а излучаемая νдв.

Для движущегося наблюдателя νнабл = νист(1 + u/c).

Для движущегося источника звука νнабл = (νист/(1 + u/c)).

Надо при этом иметь в виду, что положительная скорость в первом случае соответствует сближению, а во втором – отдалению источника от наблюдателя.

Нетрудно видеть, что обе формулы дают похожий ход изменения смещения частоты со скоростью. Если, например, u/c = 0,2, то при движении наблюдателя навстречу источнику частота повышается на 20 %, а при движении источника навстречу наблюдателю частота повысится на 25 %.

Мы молчаливо предполагали до сих пор, что оркестр и слушатель движутся вдоль линии, совпадающей с направлением распространения звука. Что изменится, если слушатель движется не навстречу, а проезжает мимо играющего оркестра? Ясно, что значение имеет лишь составляющая скорости автомашины вдоль линии распространения звука. Движение наблюдателя вдоль фронта звуковой волны, т.е. перпендикулярно к направлению распространения звука, роли не играет.

Те же соображения относятся и к движению оркестра. Применяя формулы, в этом случае следует иметь в виду, что скорость движения, входящая в формулу, должна быть взята не в момент восприятия, а в момент излучения звуковой волны.

Если в движении по отношению к воздуху находятся как наблюдатель, так и источник звука, то формулы объединяются. Частота воспринимаемого звука оказывается равной



где u – скорость наблюдателя, а v – скорость источника звука.

Изменение частоты звука при движении наблюдателя или источника звука называется эффектом Доплера.

Энергия звука

Все частицы воздуха, окружающего звучащее тело, находятся в состоянии колебания. Как мы выяснили в главе V, колеблющаяся по закону синуса материальная точка обладает определенной и неизменной полной энергией.

Когда колеблющаяся точка проходит положение равновесия, скорость ее максимальна. Так как смещение точки в это мгновение равняется нулю, то вся энергия сводится к кинетической:



Следовательно, как это мы выяснили еще на стр. 113, полная энергия пропорциональна квадрату амплитудного значения скорости колебания.

Это верно и для частиц воздуха, колеблющихся в звуковой волне. Однако частица воздуха – это нечто неопределенное. Поэтому энергию звука относят к единице объема. Эту величину можно назвать плотностью звуковой энергии.

Так как масса единицы объема есть плотность ρ, то плотность звуковой энергии



Мы говорили выше еще об одной важной физической величине, совершающей колебания по закону синуса с той же частотой, что и скорость. Это – звуковое или избыточное давление. Так как эти величины пропорциональны, то можно сказать, что плотность энергии пропорциональна квадрату амплитудного значения звукового давления.

Мы приводили выше значения амплитуд звукового колебания для громкого разговора. Амплитуда скорости равнялась 0,02 см/с. 1 см3 воздуха весит около 0,001 г. Таким образом, плотность энергии равняется



Пусть колеблется источник звука. Он излучает звуковую энергию в окружающий воздух. Энергия как бы «течет» от звучащего тела. Через каждую площадку, расположенную перпендикулярно к линии распространения звука, за секунду протекает определенное количество энергии. Эта величина называется потоком энергии, прошедшим через площадку. Если, кроме того, взята площадка в 1 см2, то протекшее количество энергии называют интенсивностью звуковой волны.

Нетрудно видеть, что интенсивность звука I равна произведению плотности энергии w на скорость звука с. Представим цилиндрик высотой 1 см и площадью основания 1 см2, образующие которого параллельны направлению распространения звука. Содержащаяся внутри такого цилиндра энергия w будет полностью покидать его через время 1/с. Таким образом, через единицу площади за единицу времени пройдет энергия w/(1/c), т.е. wc. Энергия как бы сама движется со скоростью звука.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*