KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Дэвид Дойч - Структура реальности. Наука параллельных вселенных

Дэвид Дойч - Структура реальности. Наука параллельных вселенных

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Дэвид Дойч, "Структура реальности. Наука параллельных вселенных" бесплатно, без регистрации.
Перейти на страницу:

«Структура реальности», которую я описывал до сих пор, была структурой физической реальности. Тем не менее я свободно ссылался на такие сущности, которых нет нигде в физическом мире, – абстракции, такие как числа и бесконечные множества компьютерных программ. Да и сами законы физики нельзя отнести к физическим сущностям в том смысле, в каком к ним относятся камни и планеты. Как я уже сказал, «книга природы» Галилея – это всего лишь метафора. И кроме того, существуют фикции виртуальной реальности – несуществующие среды, законы которых отличаются от реальных физических законов. Еще дальше лежит то, что я назвал CGT-средами, которые невозможно воспроизвести даже в виртуальной реальности. Я говорил, что существует бесконечно много таких сред для каждой среды, которую можно создать. Но что значит сказать, что такие среды «существуют»? Если они не существуют ни в реальности, ни даже в виртуальной реальности, то где же они существуют?

А существуют ли абстрактные нефизические сущности вообще? Являются ли они частью структуры реальности? Меня здесь занимают вовсе не проблемы словоупотребления. Очевидно, что числа, физические законы и т. п. действительно в некотором смысле «существуют», и в некотором – нет. Подлинный вопрос состоит в следующем: как мы должны понимать такие сущности? Какие из них являются всего лишь удобными словесными конструкциями, ссылающимися, в конечном счете, лишь на обычную физическую реальность? Какие из них – всего лишь преходящие особенности нашей культуры? Какие из них произвольны, как правила тривиальной игры, на которые нужно просто посмотреть? А какие, если такие вообще есть, можно объяснить, только приписав им независимое существование? Все, что относится к последнему виду, должно быть частью структуры реальности, как она определяется в этой книге, потому что это необходимо понять, чтобы понять все, что понято.

Это говорит о том, что нам снова следует воспользоваться критерием д-ра Джонсона. Если мы хотим знать, действительно ли существует данная абстракция, мы должны спросить, «дает ли она ответную реакцию» сложным, автономным образом. Например, математики характеризуют «натуральные числа» 1, 2, 3… точным определением:

• 1 является натуральным числом;

• у каждого натурального числа есть ровно одно следующее число, которое также является натуральным;

• 1 не является следующим для какого-либо натурального числа;

• два натуральных числа, следующие за которыми одинаковы, также одинаковы между собой.

Подобные определения – суть попытки абстрактного выражения интуитивного физического понятия последовательных значений дискретной величины. (Точнее, как я объяснил в предыдущей главе, это понятие на самом деле является квантово-механическим.) Арифметические действия, например, умножение и сложение, а также последующие понятия вроде простых чисел, в этом случае определяют, ссылаясь на «натуральные числа». Но создав абстрактные «натуральные числа» через это определение и поняв их через эту интуицию, мы обнаруживаем, что есть гораздо больше такого, чего мы о них все еще не понимаем. Определение простого числа раз и навсегда устанавливает, какие числа являются простыми, а какие не являются. Но понимание того, какие числа являются простыми, – например, как распределены простые числа на очень больших интервалах, как они сгруппированы, насколько и почему они «случайны», – влечет за собой массу новых озарений и новых объяснений. Фактически оказывается, что сама теория чисел – это целый мир в себе (это часто употребляемый термин). Чтобы глубже понять числа, необходимо определить много новых классов абстрактных сущностей, а также задать многочисленные новые структуры и связи между ними. При этом обнаруживается, что некоторые из этих абстрактных структур связаны с другими интуитивными представлениями, которыми мы уже обладаем, и которые, на первый взгляд, не имеют ничего общего с числами – такими, например, как симметрия, вращение, континуум, множества, бесконечность и многое другое. Получается, что абстрактные математические сущности, с которыми, как нам кажется, мы уже знакомы, тем не менее могут удивить или разочаровать нас. Они могут неожиданно возникнуть в новых нарядах или масках. Они могут быть необъяснимы, а впоследствии подойти под новое объяснение. Таким образом, они являются сложными и автономными, и, следовательно, по критерию д-ра Джонсона мы должны сделать вывод об их реальности. Поскольку мы не можем понять их ни как часть себя, ни как часть чего-либо еще, что мы уже понимаем, но можем понять их как независимые сущности, следует сделать вывод, что они являются реальными, независимыми сущностями.

Тем не менее абстрактные сущности неосязаемы. Они не дают ответной физической реакции так, как это делает камень, поэтому эксперимент и наблюдение не могут играть в математике такую же роль, какую они играют в естественных науках. В математике такую роль играет доказательство. Камень д-ра Джонсона оказывал ответное воздействие тем, что от него отскакивала нога. Простые числа оказывают ответное воздействие, когда мы доказываем что-то неожиданное относительно них, особенно, если мы можем пойти дальше и объяснить это. С традиционной точки зрения ключевое различие между доказательством и экспериментом состоит в том, что доказательство никак не ссылается на физический мир. Доказательство можно провести в своем собственном разуме или внутри генератора виртуальной реальности, который имитирует среду с неправильной физикой. При единственном условии – следования правилам математического вывода – мы получим тот же самый ответ, что и любой другой на нашем месте. И вновь, доминирующее представление состоит в том, что, за исключением случая грубых ошибок, если мы что-то доказали, то с абсолютной уверенностью знаем, что это истина.

Математики очень гордятся этой абсолютной уверенностью, а ученые-естественники склонны немного ей завидовать. Дело в том, что в естествознании невозможна полная уверенность в каком-либо утверждении. Как бы хорошо чья-то теория ни объясняла существующие наблюдения, в любой момент кто-то может сделать новое, необъяснимое наблюдение, которое поставит под сомнение всю существующую объяснительную структуру. Хуже того, кто-то может достичь лучшего понимания, которое объясняет не только все существующие наблюдения, но и то, почему предыдущие объяснения казались подходящими, будучи при этом совершенно ошибочными. Галилей, например, обнаружил новое объяснение того издревле известного факта, что земля у нас под ногами находится в состоянии покоя, – причем объяснение, предполагающего движение Земли. Виртуальная реальность – которая может сделать так, что одна среда будет казаться другой – подчеркивает тот факт, что, когда наблюдение выступает как высший арбитр между теориями, не может быть полной уверенности в том, что существующее объяснение, каким бы очевидным оно ни было, хотя бы отдаленно является истиной. Но когда в качестве арбитра выступает доказательство, достижение уверенности считается возможным.

Говорят, что правила логики были впервые сформулированы в надежде на то, что они обеспечат непредвзятый и безошибочный метод разрешения всех споров. Этой надежде не суждено было сбыться. Изучение самой логики открыло, что область действия логической дедукции как средства раскрытия истины серьезно ограничена. При наличии существенных допущений о мире можно сделать выводы дедуктивно; но эти выводы будут не надежнее, чем допущения. Единственный тип утверждений, которые логика может доказать, не прибегая к допущениям, – это тавтологии, то есть такие утверждения, как «все планеты являются планетами», которые не содержат ничего нового. В частности, все существенные естественнонаучные вопросы находятся за пределами той области, где можно уладить споры с помощью одной лишь логики. Однако считается, что математика находится в пределах этой области. Таким образом, математики ищут абсолютную, но абстрактную истину, в то время как естественники утешают себя мыслью, что могут обрести реальное и полезное знание физического мира. Но они должны принять, что на это знание не дается гарантий. Оно всегда является временным и всегда будет подвержено ошибкам. Идея о том, что наука характеризуется «индукцией», методом обоснования, который считается аналогом логической дедукции, но чуть более подверженным ошибкам, – это попытка извлечь все возможное из этого кажущегося второсортного статуса научного знания. Вместо дедуктивно обоснованной уверенности, возможно, мы удовольствуемся индуктивно обоснованной «почти-уверенностью».

Как я уже говорил, не существует такого метода доказательства, как «индукция». Идея найти путь к «почти-уверенности» в науке – это миф. Каким образом я мог бы «почти-достоверно» доказать, что завтра не опубликуют удивительную новую физическую теорию, опровергающую мои самые неоспоримые допущения относительно реальности? Или то, что я не нахожусь внутри генератора виртуальной реальности? Но все это вовсе не говорит о том, что научное знание действительно «второсортно». Ибо идея о том, что математика дает достоверное знание, – это тоже миф.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*