KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Дэвид Дойч - Структура реальности. Наука параллельных вселенных

Дэвид Дойч - Структура реальности. Наука параллельных вселенных

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Дэвид Дойч, "Структура реальности. Наука параллельных вселенных" бесплатно, без регистрации.
Перейти на страницу:

В квантовой криптосистеме Беннетта и Брассара послания кодируются состояниями отдельных фотонов, испускаемых лазером. Несмотря на то что для передачи сообщения необходимо много фотонов (один фотон на бит и намного больше фотонов, которые теряются на всевозможные неэффективности), такие машины можно построить, используя существующую технологию, потому что для выполнения своих квантовых вычислений им необходим только один фотон в каждый момент времени. Надежность системы основана не на труднорешаемости, как классической, так и квантовой, а непосредственно на свойствах квантовой интерференции: именно она дает этой системе абсолютную надежность, которую невозможно обеспечить с помощью классических методов. Никакой объем будущих вычислений ни на каком компьютере через миллионы или триллионы лет не поможет тому, кто хотел бы подслушать послания, закодированные квантовым методом, потому что если кто-либо общается через среду, проявляющую интерференцию, то он сможет обнаружить подслушивающих его людей. В соответствии с классической физикой ничто не может помешать подслушивающему, который имеет физический доступ к среде связи, например, к телефонной линии, установить пассивное подслушивающее устройство. Но, как я уже объяснил, если кто-либо осуществляет любое измерение квантовой системы, он изменяет ее последующие интерференционные свойства. На этом явлении и основан протокол связи. Связывающиеся стороны, по сути, ставят повторяющиеся эксперименты по интерференции, согласуя их через общедоступный канал связи. Только когда интерференция пройдет проверку на отсутствие подслушивающих, они переходят к следующей стадии протокола, состоящей в том, чтобы использовать некоторую часть переданной информации в качестве криптографического ключа. В худшем случае упорный шпион может совсем не дать коммуникации состояться (хотя, безусловно, этого проще достичь, перерезав телефонный кабель). Но что касается чтения сообщения, это может сделать только получатель, для которого оно предназначено, и гарантией тому являются законы физики.

Поскольку квантовая криптография зависит от манипулирования отдельными фотонами, она подвержена существенным ограничениям. Каждый последовательно получаемый фотон, переносящий один бит сообщения, должен быть каким-то образом передан невредимым от отправителя к получателю. Но любой метод передачи связан с потерями, и если они слишком большие, послание никогда не дойдет до своего адресата. Установка ретрансляционных станций (стандартная мера для устранения этой проблемы в существующих системах связи) подвергла бы риску секретность, потому что подслушивающий мог бы наблюдать за тем, что происходит внутри ретрансляционной станции, не будучи обнаруженным. Лучшие из существующих квантово-криптографических систем используют оптико-волоконные кабели и имеют дальность около десяти километров. Этого было бы достаточно, чтобы обеспечить, скажем, экономический центр города абсолютно надежной внутренней связью. Возможно, недалеки и коммерческие системы, но чтобы решить проблему криптографии с открытым ключом в общем случае (скажем, для глобальной связи), необходимы дальнейшие шаги в квантовой криптографии[42]. Экспериментальные и теоретические исследования в области квантовых вычислений набирают темп во всем мире. Предлагают все более перспективные новые технологии реализации квантовых компьютеров и постоянно открывают и анализируют новые типы квантовых вычислений с различными преимуществами перед классическими вычислениями. Я считаю эти разработки совершенно захватывающими и думаю, что некоторые из них принесут технологические плоды. Но для этой книги данный вопрос стал бы отклонением от темы. С фундаментальной точки зрения не имеет значения, насколько полезными окажутся квантовые вычисления, как не имеет значения и то, построим ли мы первый универсальный квантовый компьютер на следующей неделе, через века или не построим его никогда. В любом случае квантовая теория вычислений должна стать неотъемлемой частью мировоззрения всякого, кто ищет фундаментального понимания реальности. То, что квантовые компьютеры говорят нам о связи между законами физики, универсальностью и, казалось бы, не связанными нитями объяснения в структуре реальности, мы можем обнаружить – и уже обнаруживаем, – изучая их теоретически.

Терминология

Квантовые вычисления – вычисления, которые требуют квантово-механических процессов, особенно интерференции. Другими словами, вычисления, которые осуществляются в сотрудничестве с параллельными вселенными.

Экспоненциальные вычисления – вычисления, требования которых к ресурсам (например, необходимому времени) увеличиваются примерно в одинаковое число раз при добавлении к вводимому числа каждого дополнительного разряда.

Легко– и труднорешаемый (приближенное объяснение) – вычислительная задача считается легкорешаемой, если ресурсы, необходимые для ее выполнения, не увеличиваются экспоненциально с ростом количества разрядов вводимого числа.

Хаос – неустойчивость движения большинства классических систем. Небольшая разница между двумя начальными состояниями порождает экспоненциально растущие отклонения двух результирующих траекторий. Однако реальность подчиняется не классической, а квантовой физике. Непредсказуемость, вызванная хаосом, в общем случае тонет в квантовой неопределенности, вызванной тем, что идентичные вселенные становятся различными.

Универсальный квантовый компьютер – компьютер, способный выполнить любое вычисление, которое способен выполнить любой другой квантовый компьютер, и создать любую конечную физически возможную среду в виртуальной реальности.

Квантовая криптография – любая форма криптографии, которую можно реализовать на квантовых компьютерах, но невозможно на классических.

Специализированный квантовый компьютер – квантовый компьютер, например, квантовое криптографическое устройство или квантовое устройство разложения на множители, который не является универсальным квантовым компьютером.

Декогеренция – если различные ветви квантового вычисления в различных вселенных по-разному воздействуют на среду, интерференция уменьшается, а вычисление может не получиться. Декогеренция – это главное препятствие для практической реализации более мощных квантовых компьютеров.

Резюме

Законы физики допускают существование компьютеров, способных воспроизвести любую физически возможную среду, не используя непрактично больших ресурсов. Таким образом, универсальные вычисления не просто возможны, как этого требует принцип Тьюринга, они также относятся к классу легкорешаемых. Квантовые явления могут включать огромное множество параллельных вселенных, а потому могут не поддаваться эффективному моделированию в пределах одной вселенной. Тем не менее эта сильная форма универсальности по-прежнему сохраняется, поскольку квантовые компьютеры способны эффективно воспроизводить любую физически возможную квантовую среду, даже когда взаимодействует огромное множество вселенных. Квантовые компьютеры также могут эффективно решать определенные математические задачи, например, разложение на множители, которые с классических позиций являются трудноразрешимыми, а также реализовывать невозможные в классике разновидности криптографии. Квантовые вычисления – это качественно новый способ покорения природы.

Следующая глава, вероятно, приведет в ярость многих математиков. С этим ничего не поделаешь. Математика – это не то, чем они ее считают.

(Читатели, не знакомые с традиционными допущениями относительно надежности математического знания, могут посчитать главный вывод этой главы – о том, что наше знание математической истины зависит от нашего знания физического мира, и не более надежно, чем это знание, – очевидным. Возможно, эти читатели предпочтут лишь просмотреть эту главу по диагонали и сразу же перейти к обсуждению времени в главе 11.)

10. Природа математики

«Структура реальности», которую я описывал до сих пор, была структурой физической реальности. Тем не менее я свободно ссылался на такие сущности, которых нет нигде в физическом мире, – абстракции, такие как числа и бесконечные множества компьютерных программ. Да и сами законы физики нельзя отнести к физическим сущностям в том смысле, в каком к ним относятся камни и планеты. Как я уже сказал, «книга природы» Галилея – это всего лишь метафора. И кроме того, существуют фикции виртуальной реальности – несуществующие среды, законы которых отличаются от реальных физических законов. Еще дальше лежит то, что я назвал CGT-средами, которые невозможно воспроизвести даже в виртуальной реальности. Я говорил, что существует бесконечно много таких сред для каждой среды, которую можно создать. Но что значит сказать, что такие среды «существуют»? Если они не существуют ни в реальности, ни даже в виртуальной реальности, то где же они существуют?

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*