Альберт Эйнштейн - Эволюция физики
Кванты света
Рассмотрим стенку, построенную вдоль морского берега. Морские волны непрерывно ударяются о стенку, каждый раз что-то смывая с ее поверхности, и отступают, предоставляя свободный путь для приходящих волн. Масса стенки уменьшается, и мы можем спросить, как велика часть, смытая, скажем, за год. А теперь обрисуем другой процесс. Мы хотим уменьшить массу стенки на то же самое количество, как и раньше, но другим путем. Мы стреляем в стенку, разбивая ее в тех местах, куда попадают пули. Масса стенки будет уменьшаться, и мы легко можем представить себе, что в обоих случаях достигается одно и то же уменьшение массы. Но по виду стенки мы легко могли бы обнаружить, действовали ли на стенку непрерывные морские волны или прерывный ливень пуль. Для понимания явлений, которые мы здесь описываем, полезно учесть это различие между морскими волнами и ливнем пуль.
Мы указывали раньше, что раскаленная проволока испускает электроны. Здесь мы введем другой путь выбивания электронов из металла. Пусть на металлическую поверхность падает однородный свет, например фиолетовый, имеющий, как мы знаем, определенную длину волны. Свет выбивает из металла электроны. Электроны вырываются из металла, и ливень их устремляется вперед с определенной скоростью. Основываясь на законе сохранения энергии, мы можем сказать: энергия света частично превращается в кинетическую энергию вырванных электронов. Современная экспериментальная техника позволяет нам подсчитать число этих электронов-снарядов, определить их скорость, а стало быть, их энергию. Это вырывание электронов падающим на металл светом называется фотоэлектрическим эффектом.
Мы рассматриваем действие однородной световой волны с некоторой определенной интенсивностью. Как и в каждом эксперименте, мы должны теперь изменять условия эксперимента, чтобы посмотреть, будет ли это иметь какое-либо влияние на рассматриваемый эффект.
Начнем с изменения интенсивности однородного фиолетового света, падающего на металлическую пластинку, и заметим, в какой степени энергия испускаемых электронов зависит от интенсивности света. Попробуем найти ответ с помощью рассуждения, а не эксперимента. Мы могли бы рассуждать так: в фотоэлектрическом эффекте известная определенная порция энергии излучения превращается в энергию движения электронов. Если мы снова осветим металл светом той же длины волны, но от более мощного источника, то энергия испускаемых электронов должна быть больше, так как излучение богаче энергией. Поэтому мы должны ожидать, что скорость испускаемых электронов возрастет, если возрастет интенсивность света. Но эксперимент противоречит нашему предсказанию. Мы еще раз видим, что законы природы не таковы, какими мы хотели бы их видеть. Мы столкнулись с одним из экспериментов, который противоречит нашим предсказаниям и тем самым подрывает теорию, на которой они основывались. С точки зрения волновой теории результат реального эксперимента удивителен. Все наблюдаемые электроны имеют одинаковую скорость, одинаковую энергию, которая не изменяется при возрастании интенсивности света.
Волновая теория не могла предсказать результат эксперимента. Здесь опять новая теория возникает из конфликта старой теории с экспериментом.
Будем намеренно несправедливы к волновой теории света, забывая ее великие достижения, ее блестящее объяснение искривления луча около весьма малых препятствий (дифракция света). Сосредоточив внимание на фотоэлектрическом эффекте, потребуем от волновой теории соответствующего объяснения его. Очевидно, что из волновой теории мы не можем вывести независимость энергии электронов от интенсивности света, которым они извлекаются из металлической пластинки. Поэтому мы испробуем другую теорию. Вспомним, что корпускулярная теория Ньютона, объяснившая многие наблюдаемые явления, потерпела крах при объяснении дифракции света — явления, которым мы сейчас намеренно пренебрегаем. Во времена Ньютона понятия энергии не существовало. По Ньютону, световые корпускулы были невесомы. Каждый цвет сохранял свой собственный субстанциональный характер. Позднее, когда было создано понятие энергии и признано, что свет несет энергию, никто не думал применять эти понятия к корпускулярной теории света. Теория Ньютона умерла, и до нашего века о ее возрождении никто серьезно не помышлял.
Чтобы сохранить принципиальную идею теории Ньютона, мы должны предположить, что однородный свет состоит из зерен энергии, и заменить старые световые корпускулы световыми квантами, т. е. небольшими порциями энергии, несущимися в пустом пространстве со скоростью света. Мы будем называть эти световые кванты фотонами. Возрождение теории Ньютона в этой новой форме приводит к квантовой теории света. Не только вещество и электрический заряд, но и энергия излучения имеет зернистую структуру, т. е. состоит из световых квантов. Наряду с квантами вещества и квантами электричества существуют также и кванты энергии.
Идея квантов энергии была впервые высказана Планком в начале этого столетия для того, чтобы объяснить некоторые эффекты гораздо более сложного характера, чем фотоэлектрический. Но фотоэффект яснее и проще показывает необходимость изменения наших старых понятий.
Сразу ясно, что квантовая теория света дает объяснение фотоэлектрическому эффекту. Поток фотонов падает на металлическую пластинку. Взаимодействие между излучением и веществом состоит здесь из очень многих элементарных процессов, в которых фотон ударяется об атом и выбивает из него электрон. Эти элементарные процессы подобны друг другу, и вырванный электрон будет в каждом случае иметь одинаковую энергию. Нам становится понятным, что увеличение интенсивности света на нашем новом языке означает увеличение числа падающих фотонов. В этом случае из металлической пластинки было бы вырвано большее число электронов, но энергия каждого отдельного электрона не изменилась бы. Итак, мы видим, что эта теория находится в полном согласии с результатами наблюдения.
Что произойдет, если пучок однородного света другого цвета, скажем красного вместо фиолетового, упадет на металлическую поверхность? Предоставим эксперименту ответить на этот вопрос. Энергию испускаемых электронов можно измерить и сравнить с энергией электронов, выбиваемых фиолетовым светом. Энергия электронов, выбиваемая красным светом, оказывается меньшей, чем энергия электронов, вырываемых фиолетовым светом. Это означает, что энергия световых квантов различна для лучей различных цветов. Энергия фотонов красного луча вдвое меньше энергии фотонов фиолетового луча. Или, более строго: энергия светового кванта однородного луча уменьшается пропорционально увеличению длины волны. Это существенное различие между квантом энергии и квантом электричества. Световые кванты различны для каждой длины волны, между тем как кванты электричества всегда одинаковы. Если бы мы захотели применить одну из наших прежних аналогий, мы сравнили бы световой квант с наименьшим квантом денег, который для каждой страны различен.
Продолжим критику волновой теории света и предположим, что структура света зерниста и образована световыми квантами, т. е. фотонами, проносящимися через пространство со скоростью света. Таким образом, в нашей новой картине свет есть ливень фотонов, а фотон есть элементарный квант световой энергии. Однако, если волновая теория отбрасывается, понятие длины волны исчезает. Какое новое понятие занимает его место? Энергия световых квантов! Утверждения, выраженные в терминологии волновой теории, можно перевести в утверждения квантовой теории излучения.
Например: Терминология
волновой теории
Однородный свет имеет определенную длину волны. Длина волны красного конца спектра вдвое больше длины волны фиолетового конца.
Терминология
квантовой теории
Однородный свет состоит из фотонов определенной энергии. Энергия фотона для красного конца спектра вдвое меньше энергии фотона фиолетового конца. Положение дел можно подытожить следующим образом: существуют явления, которые можно объяснить только квантовой теорией, а не волновой. Примером такого явления служит фотоэффект; известны и другие примеры того же рода. Существуют явления, которые можно объяснить только волновой теорией, а не квантовой. Типичным примером является дифракция света. Наконец, существуют явления, которые можно одинаково хорошо объяснить как квантовой, так и волновой теориями света, например прямолинейность распространения света.
Но что такое свет в действительности? Волны или поток фотонов? Мы уже задавали раньше аналогичный вопрос: что такое свет — волны или поток световых корпускул? В то время было полное основание отбросить корпускулярную теорию и принять волновую, объяснявшую все явления. Однако теперь проблема гораздо сложнее. По-видимому, нет никаких шансов последовательно описать световые явления, выбрав только какую-либо одну из двух возможных теорий. Положение таково, что мы должны применять иногда одну теорию, а иногда — другую, а время от времени — и ту и другую. Мы встретились с трудностью нового рода. Налицо две противоречивые картины реальности, но ни одна из них в отдельности не объясняет всех световых явлений, а совместно они их объясняют!