Альберт Эйнштейн - Эволюция физики
Бор был первым, кто показал, почему именно эти, а не другие линии оказываются в спектрах. Его теория, сформулированная 25 лет назад, нарисовала картину строения атома, из которой, по крайней мере в простых случаях, можно рассчитать спектры элементов и сделать по виду не связанные скучные числа согласованными, осветив их теорией.
Теория Бора явилась промежуточной ступенью на пути к более глубокой и более общей теории, названной волновой, или квантовой, механикой. Мы хотим на этих последних страницах охарактеризовать принципиальные идеи этой теории. Прежде чем это сделать, мы должны еще напомнить о теоретическом и экспериментальном результате более специального характера.
Наш видимый спектр начинается с фиолетового цвета, соответствующего определенной длине волны, и кончается красным цветом, который также соответствует определенной длине волны. Или, другими словами, энергия фотонов видимого спектра всегда заключена внутри пределов, образованных энергиями фотонов фиолетового и красного света. Это ограничение есть, конечно, только свойство человеческого глаза. Если разность между какими-либо энергетическими уровнями достаточно велика, то испускаться будет фотон ультрафиолетового света, давая линию за пределами видимого спектра. Ее наличие нельзя обнаружить невооруженным глазом; необходимо применить фотографическую пластинку.
Рентгеновские лучи тоже состоят из фотонов гораздо большей энергии, чем энергия видимого света, или, другими словами, длина волны рентгеновских лучей гораздо меньше. Она в тысячи раз меньше, чем длина волны видимых лучей.
Но возможно ли определить экспериментально столь малую длину волны? Это довольно трудно было сделать даже для обычного света. Мы должны были иметь малые препятствия или малые отверстия. Два булавочных отверстия, дающих дифракцию обычного света, очень близко расположены друг к другу; они должны быть в тысячи раз меньше и в тысячи раз плотнее расположены друг к другу, чтобы дать дифракцию рентгеновских лучей.
Как в таком случае можем мы измерить длину волны этих лучей? Сама природа приходит нам на помощь.
Кристалл есть конгломерат атомов, расположенных совершенно правильным образом на очень близких расстояниях друг от друга. Рис. 79 показывает простую модель структуры кристалла. Вместо мелких отверстий здесь имеются крайне малые препятствия, образованные атомами элемента, расположенными очень тесно друг к другу и в абсолютно правильном порядке. Расстояния между атомами, как это найдено теорией, изучающей структуры кристаллов, так малы, что можно было ожидать получения эффекта дифракции рентгеновских лучей. Эксперимент подтвердил, что и в самом деле возможно получить дифракцию рентгеновских лучей с помощью этих тесно упакованных препятствий, расположенных в исключительно правильной трехмерной решетке, встречающейся в кристалле.
Предположим, что пучок рентгеновских лучей падает на кристалл, а затем, пройдя сквозь него, регистрируется на фотографической пластинке. На пластинке в таком случае обнаруживается дифракционная картина. Чтобы изучить спектры рентгеновских лучей, чтобы из дифракционной картины вывести определенные заключения о длине волны, применялись различные методы. То, что здесь мы рассказали в нескольких словах, заполнило бы целые тома, если бы были изложены все теоретические и экспериментальные подробности. На рис. 80 мы воспроизвели только одну дифракционную картину, полученную одним из разнообразных методов. Мы снова видим темные и светлые кольца, столь характерные для волновой теории. В центре виден след недифрагированного луча. Если бы между источником рентгеновских лучей и фотографической пластинкой не был помещен кристалл, то, кроме этого следа, на пластинке ничего не было бы видно. Из таких фотографий можно подсчитать длины волн рентгеновских спектров, а с другой стороны, если длина волны известна, можно сделать заключение о структуре кристалла.
Волны материи
Как истолковать тот факт, что в спектрах элементов оказываются лишь определенные характерные длины волн?
В физике часто случалось, что существенный успех был достигнут проведением последовательной аналогии между не связанными по виду явлениями. В этой книге мы часто видели, как идеи, созданные и развитые в одной ветви науки, были впоследствии успешно применены в другой.
Развитие механистических взглядов и теории поля дает много примеров этого рода. Сравнение разрешенных проблем с проблемами неразрешенными может подсказать новые идеи и пролить новый свет на наши трудности. Легко найти поверхностную аналогию, которая в действительности ничего не выражает. Но вскрыть некоторые общие существенные черты, скрытые под поверхностью внешних различий, создать на этой базе новую удачную теорию — это важная созидательная работа. Развитие так называемой волновой механики, которое началось с работ де Бройля и Шрёдингера около 15 лет тому назад, является типичным примером достижений успешной теории, полученной путем глубоких и удачных аналогий.
Наш исходный пункт — это классический пример, ничего общего не имеющий с современной физикой. Возьмем в руки конец очень длинной гибкой резиновой трубки или пружины и будем двигать его ритмично вверх и вниз так, чтобы конец колебался. Тогда, как мы видели из многих других примеров, колебанием создается волна, распространяющаяся по трубке с определенной скоростью (рис. 81). Если мы представим себе бесконечно длинную трубку, то группы волн, однажды отправленные, будут следовать в своем бесконечном путешествии без интерференции.
Возьмем теперь другой пример. Оба конца той же самой трубки закреплены. Если угодно, можно использовать скрипичную струну. Что происходит теперь, когда на одном конце резиновой трубки или струны создается волна? Волна, как и в предыдущем случае, начнет свое путешествие, но она скоро отразится от другого конца трубки. Теперь мы имеем две волны: одну, созданную колебанием, и другую, созданную отражением; они движутся в противоположных направлениях и интерферируют друг с другом. Нетрудно было бы проследить интерференцию обеих волн и определить характер волны, образующейся из их сложения; она называется стоячей волной. Эти два слова — «стоячая» и «волна»- кажутся противоречащими друг другу, тем не менее их комбинация оправдывается результатом наложения обеих волн.
Простейшим примером стоячей волны является движение струны с двумя закрепленными концами вверх и вниз, как показано на рис. 82. Это движение есть результат того, что одна волна накладывается на другую, когда обе они проходят в различных направлениях. Характерная черта этого движения состоит в том, что в покое остаются только две конечные точки. Они называются узлами. Волна, так сказать, устанавливается между двумя узлами, все точки струны одновременно достигают максимума и минимума своих отклонений.
Но это только простейший вид стоячих волн. Существуют и другие. Например, стоячая волна может иметь и три узла — по одному на каждом конце и один в середине. В этом случае в покое всегда остаются три точки. Из рис. 83 видно, что здесь длина волны вдвое меньше длины волны в примере с двумя узлами. Аналогично стоячие волны могут иметь четыре (рис. 84), пять узлов и более. В каждом случае длина волны будет зависеть от числа узлов.
Это число может быть только целым и может изменяться только скачками. Предложение типа «Число узлов в стоячей волне равно 3,576» есть чистая бессмыслица. Таким образом, длина волны может изменяться только прерывно (дискретно). Здесь, в этой классической проблеме, мы узнаем знакомые черты квантовой теории. Стоячая волна, созданная скрипачом, фактически еще более сложна, будучи смесью очень многих волн с двумя, тремя, четырьмя, пятью узлами и более, а стало быть, смесью различных длин волн.
Физика может разложить такую смесь на простые стоячие волны, из которых она составлена. Или, употребляя нашу прежнюю терминологию, мы можем сказать, что колеблющаяся струна имеет свой спектр, так же как и элемент, испускающий излучение. И, так же как и в случае спектра элемента, здесь разрешены лишь известные длины волн, все же другие запрещены.
Таким образом, мы открыли некоторое подобие между колебанием струны и атомом, испускающим излучение. Странно, как может существовать эта аналогия, но мы все же сделаем из нее дальнейшее заключение и попробуем продолжить сравнение, раз уж мы начали его.
Атом каждого элемента состоит из элементарных частиц: из тяжелых, составляющих ядро, и из легких — электронов. Такая система частиц ведет себя подобно маленькому акустическому инструменту, в котором создаются стоячие волны.
Однако стоячая волна является результатом интерференции двух или более движущихся волн. Если в нашей аналогии есть некоторая доля правды, то распространяющейся волне должна соответствовать еще более простая структура, чем структура атома. Что же имеет наиболее простую структуру? В нашем материальном мире ничто не может быть более простым, чем электрон, элементарная частица, на которую не действуют никакие силы, т. е. электрон, покоящийся или находящийся в прямолинейном и равномерном движении. Мы могли бы прибавить новое звено в цепи нашей аналогии: движущийся прямолинейно и равномерно электрон — воґлны определенной длины. Это была новая и смелая идея де Бройля.