Альберт Эйнштейн - Эволюция физики
Но до сих пор мы не имели успеха в последовательном и убедительном выполнении этой программы. Заключение о том, возможно ли ее выполнить, принадлежит будущему. В настоящее время во всех наших теоретических построениях мы все еще должны допускать две реальности — поле и вещество.
Фундаментальные проблемы еще стоят перед нами. Мы знаем, что все вещество состоит лишь из частиц немногих видов. Как различные формы вещества построены из этих элементарных частиц? Как эти элементарные частицы взаимодействуют с полем? Поиски ответа на эти вопросы привели к новым идеям в физике, идеям квантовой теории.
Подведем итоги.
В физике появилось новое понятие, самое важное достижение со времени Ньютона — поле. Потребовалось большое научное воображение, чтобы уяснить себе, что не заряды и не частицы, а поле в пространстве между зарядами и частицами существенно для описания физических явлений. Понятие поля оказывается весьма удачным и приводит к формулированию уравнений Максвелла, описывающих структуру электромагнитного поля, управляющих электрическими, равно как и оптическими, явлениями.
Теория относительности возникает из проблемы поля. Противоречия и непоследовательность старых теорий вынуждают нас приписывать новые свойства пространственно-временноґму континууму, этой арене, на которой разыгрываются все события нашего физического мира.
Теория относительности развивается двумя этапами. Первый этап приводит к так называемой специальной теории относительности, применяемой только к инерциальным системам координат, т. е. к системам, в которых справедлив закон инерции, как он был сформулирован Ньютоном. Специальная теория относительности основывается на двух фундаментальных положениях: физические законы одинаковы во всех системах координат, движущихся прямолинейно и равномерно друг относительно друга; скорость света всегда имеет одно и то же значение. Из этих положений, полностью подтвержденных экспериментом, выведены свойства движущихся масштабов и часов, изменения их длины и ритма, зависящие от скорости. Теория относительности изменяет законы механики. Старые законы несправедливы, если скорость движущейся частицы приближается к скорости света. Новые законы движения тела, сформулированные теорией относительности, блестяще подтверждаются экспериментом. Дальнейшее следствие теории относительности (специальной) есть связь между массой и энергией. Масса — это энергия, а энергия имеет массу. Оба закона сохранения — закон сохранения массы и закон сохранения энергии — объединяются теорией относительности в один закон, в закон сохранения массы — энергии.
Общая теория относительности дает еще более глубокий анализ пространственно-временноґго континуума. Справедливость теории относительности больше не ограничивается инерциальными системами отсчета. Теория берется за проблему тяготения и формулирует новые структурные законы для поля тяготения. Она заставляет нас проанализировать роль, которую играет геометрия в описании физического мира. Эквивалентность тяжелой и инертной масс она рассматривает как существенный, а не просто случайный факт, каким та была в классической механике. Экспериментальные следствия общей теории относительности лишь слегка отличаются от следствий классической механики. Они выдерживают экспериментальную проверку всюду, где возможно сравнение. Но сила теории заключается в ее внутренней согласованности и простоте ее основных положений.
Теория относительности подчеркивает важность понятия поля в физике. Но нам еще не удалось сформулировать чистую физику поля. В настоящее время мы должны еще предполагать существование и поля, и вещества.
IV. Кванты
Непрерывность — прерывность
Перед нами раскрыта карта города Нью-Йорка и окружающей его местности. Мы спрашиваем: каких пунктов на этой карте можно достичь поездом? Просмотрев эти пункты в железнодорожном расписании, мы отмечаем их на карте. Затем мы изменяем вопрос и спрашиваем: каких пунктов можно достичь автомобилем? Если мы нарисуем на карте линии, представляющие все дороги, начинающиеся в Нью-Йорке, то любого пункта, лежащего на этих дорогах, практически можно достичь на автомобиле. В обоих случаях мы имеем ряд точек. В первом случае они отдалены друг от друга и представляют собой различные железнодорожные станции, а во втором они суть точки вдоль шоссейных дорог. Следующий наш вопрос — о расстоянии до каждой из этих точек от Нью-Йорка или, для большей точности, от определенного места в этом городе. В первом случае точкам на карте соответствуют определенные числа. Эти числа изменяются нерегулярно, но всегда на конечную величину, скачком. Мы говорим: расстояния от Нью-Йорка до мест, которых можно достичь на поезде, изменяются только прерывно. Однако расстояния до мест, которых можно достичь на автомобиле, могут изменяться как угодно мало, они могут меняться непрерывно. Изменения расстояний можно сделать произвольно малыми в случае путешествия на автомобиле, а не на поезде.
Продукцию каменноугольных копей можно изменять непрерывным образом. Количество произведенного угля можно увеличивать или уменьшать произвольно малыми порциями. Но число работающих углекопов можно изменять только прерывно. Было бы чистой бессмыслицей сказать: «Со вчерашнего дня число работающих увеличилось на 3,783».
Человек, которого спросили о количестве денег в его кармане, может назвать не любую, сколь угодно малую величину, а лишь величину, содержащую только два десятичных знака. Сумма денег может изменяться только скачками, прерывно. В Америке наименьшее возможное изменение, или, как мы будем его называть, «элементарный квант» американских денег, есть один цент. Элементарный квант английских денег есть один фартинг, стоящий только половину американского элементарного кванта. Здесь мы имеем пример двух элементарных квантов, величину которых можно сравнивать друг с другом. Отношение их величин имеет определенный смысл, так как стоимость одного из них в два раза превышает стоимость другого.
Мы можем сказать: некоторые величины могут изменяться непрерывно, другие же могут изменяться только прерывно, порциями, которые уже нельзя дальше уменьшать. Эти неделимые порции называются элементарными квантами этих величин.
Мы можем взвешивать огромные количества песка и считать его массу непрерывной, хотя его зернистая структура очевидна. Но если бы песок стал очень драгоценным, а употребляемые весы очень чувствительными, мы должны были бы признать факт, что масса песка всегда изменяется на величину, кратную массе одной наименьшей частицы. Масса этой наименьшей частицы была бы нашим элементарным квантом. Из этого примера мы видим, как прерывный характер величины, до тех пор считавшейся непрерывной, обнаруживается благодаря увеличению точности наших измерений.
Если бы мы должны были характеризовать основные идеи квантовой теории в одной фразе, мы могли бы сказать: следует предположить, что некоторые физические величины, считавшиеся раньше непрерывными, состоят из элементарных квантов.
Область фактов, охватываемых квантовой теорией, чрезвычайно велика. Эти факты открыты благодаря высокому развитию техники современного эксперимента. Так как мы не можем ни показать, ни описать даже основные эксперименты, мы часто должны будем приводить их результаты догматически. Наша цель — объяснить лишь принципиальные, основные идеи.
Элементарные кванты вещества и электричества
В картине строения вещества, нарисованной кинетической теорией, все элементы построены из молекул. Возьмем простейший пример наиболее легкого химического элемента — водорода. Мы видели, как изучение броуновского движения привело к определению массы молекулы водорода. Она равна
0,0000000000000000000000033 г.
Это означает, что масса прерывна. Масса любой порции водорода может изменяться лишь на целое число наименьших порций, каждая из которых соответствует массе одной молекулы водорода. Но химические процессы показали, что молекула водорода может быть разбита на две части или, другими словами, что молекула водорода состоит из двух атомов. В химическом процессе роль элементарного кванта играет атом, а не молекула. Деля указанное выше число на два, мы находим массу атома водорода; она равна приблизительно
0,0000000000000000000000017 г.
Масса является величиной прерывной. Но, конечно, нам не следует беспокоиться об этом при обычном определении веса тела. Даже наиболее чувствительные весы далеки от достижения такой степени точности, которая позволяла бы обнаружить прерывное изменение массы тела.