KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Физика » Александр Китайгородский - Физика для всех. Движение. Теплота

Александр Китайгородский - Физика для всех. Движение. Теплота

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Александр Китайгородский, "Физика для всех. Движение. Теплота" бесплатно, без регистрации.
Перейти на страницу:

Коэффициент пропорциональности перед r3 есть величина, зависящая только от массы Солнца, – одинаковая для любой планеты. Следовательно, для двух планет справедливо соотношение



Отношение квадратов времен обращения планет оказывается равным отношению кубов радиусов их орбит. Этот интересный закон был выведен Кеплером из опыта. Закон всемирного тяготения объяснил наблюдения Кеплера.

Круговое движение одного небесного тела около другого – это лишь одна из возможностей.

Траектории одного тела, вращающегося около другого благодаря силам тяготения, могут быть самыми различными. Однако, как показывает расчет и как еще до всякого расчета было обнаружено Кеплером, все они принадлежат к одному классу кривых, называемых эллипсами.

Если привязать нитку к двум булавкам, воткнутым в лист чертежной бумаги, натянуть нитку острием карандаша и двигать карандашом так, чтобы нитка оставалась натянутой, то на бумаге в конце концов прочертится замкнутая кривая – это и есть эллипс (рис. 68). Места, где находятся булавки, будут фокусами эллипса.



Эллипсы могут иметь различную форму. Если взять нитку много длиннее, чем расстояние между булавками, то эллипс будет очень похож на круг. Напротив, если длина нитки чуть-чуть больше расстояния между булавками, то получится удлиненный эллипс – почти палочка.

Планеты описывают эллипсы, в одном из фокусов которых находится Солнце.

Какие же эллипсы описывают планеты? Оказывается, очень близкие к окружности.

Наиболее отличен от окружности путь ближайшей к Солнцу планеты – Меркурия. Но и в этом случае самый длинный диаметр эллипса всего лишь на 2 % больше самого короткого. Иное дело орбиты искусственных планет. Посмотрите на рис. 69. Орбиту Марса не отличишь от круга.



Однако Солнце находится в одном из фокусов эллипса, а не в его центре, и поэтому расстояние планеты от Солнца меняется сильнее. Проведем линию через два фокуса эллипса – она пересечет эллипс в двух местах. Точку, ближайшую к Солнцу, называют перигелием, наиболее далекую от Солнца – афелием. Меркурий, когда находится в перигелии, в 1,5 раза ближе к Солнцу, чем в афелии.

Главные планеты описывают вокруг Солнца эллипсы, близкие к окружности. Однако существуют небесные тела, которые движутся около Солнца по сильно вытянутым эллипсам. К ним принадлежат кометы. Их орбиты не идут ни в какое сравнение по вытянутости с орбитами планет. Про небесные тела, движущиеся по эллипсам, можно сказать, что они принадлежат к семье Солнца. Однако в нашу систему забредают и случайные пришельцы.

Наблюдались кометы, описывающие около Солнца такие кривые, судя по форме которых можно было сделать вывод: комета не вернется, она не принадлежит к семейству солнечной системы. «Открытые» кривые, описываемые кометами, называются гиперболами.

Особенно быстро движутся такие кометы, когда они проходят около Солнца. Это и понятно – полная энергия кометы постоянна, а подходя к Солнцу, комета имеет наименьшую потенциальную энергию. Значит, кинетическая энергия движения будет в этом случае наибольшая. Конечно, такой эффект имеет место для всех планет и для нашей Земли. Однако эффект этот невелик, так как мала разница потенциальных энергий в афелии и перигелии.

Интересный закон движения планеты вытекает из закона сохранения момента импульса.

На рис. 70 изображено два положения планеты. От Солнца, т.е. от фокуса эллипса, проведены два радиуса к положениям планеты, и образовавшийся сектор заштрихован. Надо определить величину площади, описываемой радиусом за единицу времени. При небольшом угле сектор, описанный радиусом за секунду, можно заменить треугольником. Основание треугольника – скорость v (путь, проходимый за секунду), а высота треугольника равна плечу d скорости. Поэтому площадь треугольника есть vd/2.



Из закона сохранения момента следует постоянство величины mvd во время движения. Но если mvd неизменно, то не меняется и площадь треугольника vd/2. Мы можем начертить секторы для любых моментов времени – они окажутся одинаковыми по площади. Скорость планеты меняется, но то, что можно назвать секториальной скоростью, остается неизменным.

Не все звезды имеют планетное окружение. Довольно много в небе двойных звезд. Два огромных небесных тела вращаются одно около другого.

Огромная масса Солнца делает его центром семейства. В двойных звездах оба небесных тела имеют близкие по величине массы. В этом случае нельзя считать, что одна из двух звезд покоится. Как же происходит движение в этом случае? Мы знаем, что каждая замкнутая система имеет одну покоящуюся (или равномерно движущуюся) точку – это центр инерции. Вокруг этой точки и вращаются обе звезды. При этом они описывают подобные эллипсы, что следует из написанного на стр. 135 условия m1/m2 = r2/r1.

Эллипс одной звезды больше эллипса другой во столько раз, во сколько масса одной звезды больше массы другой (рис. 71). При равных массах обе звезды будут описывать около центра инерции одинаковые траектории.



Планеты солнечной системы находятся в идеальных условиях: они не подвержены трению.

Создаваемые людьми маленькие искусственные небесные тела – спутники – не находятся в таком идеальном положении: силы трения, пусть сначала очень незначительные, но все же чувствительные, решительно вмешиваются в их движение.

Полная энергия планеты остается неизменной. Полная энергия спутника с каждым оборотом слегка падает. На первый взгляд кажется, что трение будет замедлять движение спутника. В действительности происходит обратное.

Вспомним прежде всего, что скорость спутника равна

sqrt(gR) или sqrt(γ(M/R)), где R – расстояние от центра Земли, а М – ее масса.

Полная энергия спутника равна:



Подставив значение скорости спутника, найдем для кинетической энергии выражение γ(mM/2R). Мы видим, что по абсолютной величине кинетическая энергия в два раза меньше потенциальной, а полная энергия равна



При наличии трения полная энергия будет падать, т.е. (поскольку она отрицательна) расти по абсолютной величине; расстояние R начнет уменьшаться: спутник снижается. Что при этом произойдет со слагаемыми энергии? Потенциальная энергия убывает (растет по абсолютной величине), кинетическая энергия растет.

Общий баланс все же отрицателен, так как потенциальная энергия убывает вдвое быстрее, чем возрастает кинетическая.

Трение приводит к возрастанию скорости движения спутника, а не к замедлению.

Теперь понятно, почему большая ракета-носитель обгоняет маленький спутник. У большой ракеты трение больше.

Если бы не было Луны

Мы не будем обсуждать печальные следствия отсутствия Луны для поэтов и влюбленных. Заголовок параграфа надо понимать гораздо прозаичнее: как сказывается присутствие Луны на земной механике.

Когда мы раньше обсуждали, какие силы действуют на лежащую на столе книгу, то уверенно говорили: притяжение Земли и сила реакции. Но, строго говоря, лежащая на столе книга притягивается и Луной, и Солнцем, и даже звездами.

Луна – наш ближайший сосед. Забудем про Солнце и звезды и посмотрим, насколько изменится вес тела на Земле под действием Луны.

Земля и Луна находятся в относительном движении. По отношению к Луне Земля как целое (т.е. все точки Земли) движется с ускорением γ(m/r2), где m – масса Луны, а r – расстояние от центра Луны до центра Земли. Рассмотрим тело, лежащее на поверхности Земли. Нас интересует, насколько изменится его вес под действием Луны. Земной вес определяется ускорением по отношению к Земле. Поэтому, иными словами, нас интересует, насколько изменится под действием Луны ускорение лежащего на земной поверхности тела по отношению к Земле.

Ускорение Земли по отношению к Луне γ(m/r2); ускорение тела, лежащего на поверхности Земли, по отношению к Луне γ(m/r12), где r1 – расстояние от тела до Луны (рис. 72).



А нам нужно дополнительное ускорение тела по отношению к Земле: оно будет равно геометрической разности соответствующих ускорений.

Величина γ(m/r2) – постоянное число для Земли, а γ(m/r12) – разное в разных точках земной поверхности. Значит, и интересующая нас геометрическая разность будет различной для разных мест земного шара.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*