Ричард Фейнман - 7. Физика сплошных сред
Атомные магнитики, будучи помещены во внешнее магнитное поле, приобретут дополнительную магнитную энергию, которая зависит от компоненты их магнитного момента в направлении поля. Мы знаем, что
Uмаг=-m·В. (34.28) Выбирая ось z вдоль направления поля В, получаем
Uмаг=mzВ. (34.29) А используя уравнение (34.27), находим
Согласно квантовой механике, величина Jzможет принимать только такие значения: jh, (j-1)h,...,- jh. Поэтому магнитная энергия атомной системы не произвольна, допустимы только некоторые ее значения. Например, максимальная величина энергии равна
Величину qeh/2m обычно называют «магнетоном Бора» и обозначают через mB:
Возможные значения магнитной энергии будут следующими:
где Jz/h принимает одно из следующих значений: j, (j-1), (j-2), ..., (-j+1), -j.
Другими словами, энергия атомной системы, помещенной в магнитное поле, изменяется на величину, пропорциональную полю и компоненте Jг. Мы говорим, что энергия атомной магнитной системы «расщепляется магнитным полем на 2j+1 уровня». Например, атомы со спином j=3/2, энергия которых вне магнитного поля равна U0, в магнитном поле будут иметь четыре возможных значения энергии. Эти энергии можно изобразить на диаграмме энергетических уровней наподобие фиг. 34.5.
Фиг. 34.5. Возможные магнитные энергии атомной системы со спином 3/2 в магнитном поле В.
Однако энергия каждого атома в данном поле В принимает только одно из четырех возможных значений. Именно это говорит квантовая механика о поведении атомной системы в магнитном поле.
Простейшая «атомная» система — отдельный электрон. Спин электрона равен J/2, поэтому у него возможны два состояния: Jz=h/2 и Jz=-h/2. Для спинового магнитного момента отдельного покоящегося электрона (у которого отсутствует орбитальное движение) g=2, так что магнитная энергия будет ±mBB. На фиг. 34.6 показаны возможные энергии электрона в магнитном поле.
Фиг. 34.6. Два возможных энергетических состояния электрона в магнитном поле В.
Грубо говоря, спин электрона направлен либо «вверх» (по магнитному полю), либо «вниз» (против поля).
У системы с более высоким спином число состояний тоже больше. Поэтому мы можем в зависимости от величины Jzговорить о спине, направленном «вверх» или «вниз» или под некоторым «углом».
Эти результаты квантовой механики мы будем использовать при обсуждении магнитных свойств материалов в следующей главе.
Глава 35
ПАРАМАГНЕТИЗМ И МАГНИТНЫЙ РЕЗОНАНС
§ 1. Квантованные магнитные состояния
§ 2. Опыт Штерна — Герлаха
§ 3. Метод молекулярных пучков Раби
§ 4. Парамагнетизм
§ 5. Охлаждение адиабатическим размагничиванием
§ 6. Ядерный магнитный резонанс
Повторить: гл. 1 (вып. 5) «Внутреннее устройство диэлектрика
§ 1. Квантованные магнитные состояния
В предыдущей главе мы говорили, что в квантовой механике момент количества движения системы не может иметь произвольного направления, а его компоненты вдоль данной оси могут принимать только определенные дискретные эквидистантные значения. Это поразительная, но характерная особенность квантовой механики. Вам может показаться, что еще слишком рано влезать в такие вещи, что надо подождать, пока вы хоть немного не привыкнете к ним и не будете готовы воспринимать подобные идеи. Но дело в том, что привыкнуть к ним вы никогда не сможете. Вы никогда не сможете легко их воспринимать. Это, пожалуй, самое сложное из всего, что я рассказывал вам до сих пор и, главное, нет способа описать это как-то более вразумительно и не так хитроумно и сложно по форме. Поведение вещества в малых масштабах, как я уже говорил много раз, отличается от всего того, к чему вы привыкли, и поистине весьма странно. Вы, конечно, согласитесь, что было бы неплохо попытаться поближе познакомиться с явлениями в малом масштабе, продолжая одновременно использовать классическую физику, и приобрести поначалу хоть какой-то опыт, пусть даже не понимая всего достаточно глубоко. Понимание этих вещей приходит очень медленно, если оно приходит вообще. Конечно, понемногу начинаешь чувствовать, что может и что не может произойти в данной квантовомеханической ситуации, а это, возможно, и называется «пониманием», но добиться приятного чувства «естественности» квантовомеханических правил здесь невозможно. Они-то, конечно, естественны, но с точки зрения нашего повседневного опыта на привычном уровне остаются очень уж необычными. Мне бы хотелось объяснить вам, что позиция, которую мы собираемся занять по отношению к этому правилу о дискретности значений момента количества движения, совершенно отлична от отношения ко многим другим вещам, о которых шла речь. Я даже не буду пытаться «объяснять» его, но должен хоть рассказать вам, что получается. Было бы нечестно с моей стороны, описывая магнитные свойства материалов, не указать, что классическое объяснение магнетизма, т. е. момента количества движения и магнитного момента, несостоятельно.
Одно из наиболее необычных следствий квантовой механики состоит в том, что момент количества движения вдоль любой оси всегда оказывается равным целой или полуцелой доле h, причем какую бы ось вы ни взяли, это всегда будет так. Парадоксальность здесь заключается в следующем любопытном факте: если вы возьмете любую другую ось, то окажется, что компоненты относительно этой оси тоже будут взяты из того же самого набора значений. Однако оставим рассуждения до того времени, когда у вас наберется достаточно опыта и вы сможете насладиться тем, как этот кажущийся парадокс в конце концов разрешится.
Сейчас просто примите на веру, что у каждой атомной системы есть число j, называемое спином системы (оно может быть либо целым, либо полуцелым), и что компоненты момента количества движения относительно любой данной оси всегда принимают одно из значений между +jh и -jh:
Мы упомянули также, что магнитный момент любой простой атомной системы имеет то же самое направление, что и ее момент количества движения. Это справедливо не только для атомов или ядер, но и для элементарных частиц. Каждая элементарная частица обладает характерной для нее величиной j и своим собственным магнитным моментом. (Для некоторых частиц обе они равны нулю.) Мы понимаем под «магнитным моментом системы», что ее энергия в направленном по оси z магнитном поле для слабых полей может быть записана как — mzВ. Мы должны условиться не брать слишком больших полей, ибо они будут возмущать внутренние движения системы и энергия не будет мерой магнитного момента, который система имела до включения магнитного поля. Но если поле достаточно слабо, то оно изменяет энергию на величину
DU=-mzB, (35.2)
с тем условием, что в этом выражении мы должны сделать подстановку
причем Jzравно одному из значений (35.1).
Предположим, что мы взяли систему со спином j=3/2 В отсутствие магнитного поля у системы было бы четыре различных возможных состояния, соответствующих различным значениям Jz с одной и той же энергией. Но в тот момент, когда мы включаем магнитное поле, появляется дополнительная энергия взаимодействия, которая разделяет эти состояния на четыре состояния, слабо различающиеся по энергии, или, как говорят, первоначальный энергетический уровень расщепился; на четыре новых уровня. Эти уровни определяются энергией, пропорциональной произведению В на h, и на 3/2, 1/2 , -1/2 или -3/2 в зависимости от величины Jг. Расщепление энергетических уровней в атомной системе со спинами 1/2, 1 и 3/2 показаны на фиг. 35.1.
(Вспомните, что для любого расположения электронов магнитный момент всегда направлен противоположно моменту количества движения.)
Обратите внимание, что «центр тяжести» энергетических уровней на фиг. 35.1 один и тот же как в присутствии магнитного поля, так и без него. Заметьте также, что все расстояния от одного уровня до следующего для данной частицы в данном магнитном поле равны между собой. Расстояние между уровнями для данного магнитного поля В мы будем записывать как hwp, что является просто определением wp . Воспользовавшись (35.2) и (35.3), получим