Ричард Фейнман - 8a. Квантовая механика I
Теперь мы видим, что происходит. Сложив |П> и |Л>, мы получаем нечто отличное от того, что получилось бы при сложении |П'> и |Л'>. Скажем, x-поляризованный фотон есть [см. (9.35)] сумма |П> и |Л>, но y-поляризованный фотон — это сумма со сдвигом фазы первого на 90° назад, а второго — на 90° вперед. Это просто то же самое, что получилось бы из суммы |П> и |Л'> при определенном выборе угла 0=90°, и это правильно, В штрихованной системе x-поляризация — это то же самое, что y-поляризация в первоначальной системе. Значит, не совсем верно, что поляризованный по кругу фотон выглядит в любой системе осей одинаково. Его фаза (фазовое соотношение между право- и левополяризованными по кругу состояниями) запоминает направление х.
§ 5. Нейтральный К-мезон**
Теперь мы расскажем о двухуровневой системе из мира странных частиц — о системе, для которой квантовая механика приводит к поразительнейшим предсказаниям. Полное описание этой системы потребовало бы от нас таких знаний о странных частицах, каких у нас пока нет, поэтому, к сожалению, кое- какие углы нам придется срезать. Мы лишь вкратце успеем изложить историю того, как было сделано одно открытие, чтобы показать вам, какого типа рассуждения для этого потребовались. Началось это с открытия Гелл-Манном и Нишиджимой понятия странности и нового закона сохранения странности.
И вот когда Гелл-Манн и Пайс проанализировали следствия из этих новых представлений, то они пришли к предсказанию замечательнейшего явления, о котором мы и хотим повести речь.
Сперва, однако, нужно немного рассказать о «странности».
Начать нужно с того, что называется сильными взаимодействиями ядерных частиц. Существуют взаимодействия, которые ответственны за мощные ядерные силы, в отличие, например, от относительно более слабых электромагнитных взаимодействий. Взаимодействия «сильны» в том смысле, что если две частицы сойдутся так близко, чтобы быть способными взаимодействовать, то взаимодействуют они очень мощно и создают другие частицы очень легко. Ядерные частицы обладают еще так называемым «слабым взаимодействием», в результате которого происходят такие вещи, как бета-распад; но они всегда происходят очень медленно (по ядерным масштабам времени): слабые взаимодействия на много-много порядков величины слабее, чем сильные, и даже слабее, чем электромагнитные.
Когда при помощи больших ускорителей начали изучать сильные взаимодействия, все были поражены, увидев, что некоторые вещи, которые «должны были» произойти (ожидалось, что они произойдут), на самом деле не возникали. К примеру, в некоторых взаимодействиях не появлялась частица определенного сорта, хотя ожидалось, что она появится. Гелл-Манн и Нишиджима заметили, что многие из этих странных случаев можно было объяснить одним махом, изобретя новый закон сохранения: сохранение странности. Они предположили, что существует свойство нового типа, связываемое с каждой частицей,— число, названное ими «странностью»,— и что во всяком сильном взаимодействии «количество странности» сохраняется. Предположим, например, что отрицательный K-мезон высокой энергии, скажем с энергией во много Гэв, сталкивается с протоном. Из их взаимодействия могут произойти много других частиц: p-мезонов, K-мезонов, A-частиц, S-частиц,— любые из мезонов или барионов, перечисленных в табл. 2.2 (вып. 1). Оказалось, однако, что возникали только определенные комбинации, а другие — никогда.
Про некоторые законы сохранения было известно, что они обязаны соблюдаться. Во-первых, всегда сохранялись энергия и импульс. Полная энергия и импульс после события должны быть такими же, как и перед событием. Во-вторых, существует закон сохранения электрического заряда, утверждающий, что полный заряд выходящих частиц обязан равняться полному заряду, внесенному начальными частицами. В нашем примере столкновения К-ыезона. и протона действительно происходят такие реакции:
И никогда из-за несохранения заряда не идут реакции
Было также известно, что количество барионов сохраняется. Количество выходящих барионов должно быть равно количеству входящих. В этом законе античастица бариона считается за минус один барион. Это значит, что мы можем видеть — и видим — реакции
(где — это антипротон, несущий отрицательный заряд). Но мы никогда не увидим
(даже если энергия очень-очень большая), потому что число барионов здесь не сохранялось бы.
Эти законы, однако, не объясняют того странного факта, что нижеследующие реакции, которые с виду не особенно отличаются от кое-каких приведенных в (9.38) или (9.40), тоже никогда не наблюдались:
Объяснением служит сохранение странности. За каждой частицей следует число — ее странность S, и имеется закон, что в любом сильном взаимодействии полная странность на выходе должна равняться полной странности на входе. Протон и антипротон (), нейтрон и антинейтрон () и p-мезоны (p+ , p0, p-) — все имеют странность нуль; у К+- и K0-мезонов странность равна +1;у К-и (анти-К0), у L0- и S-частиц (2S+ , S0, S-) странность равна -1. Существует также частица со странностью -2 (-частица), а может быть, и другие, пока неизвестные. Перечень этих странностей приведен в табл. 9.4.
Таблица 9.4 · СТРАННОСТИ СИЛЬНО ВЗАИМОДЕЙСТВУЮЩИХ ЧАСТИЦ
Посмотрим, как действует сохранение странности в некоторых написанных реакциях. Если мы исходим из К-и протона, то их суммарная странность равна (-1)+0 =-1. Сохранение странности утверждает, что странности продуктов реакции после сложения тоже должны дать -1. Вы видите, что в реакциях (9.38) и (9.40) это действительно так. Но в реакциях (9.42) странность справа во всех случаях есть нуль. В них странность не сохраняется, и они не происходят. Почему? Это никому не известно. Никому не известно что-либо сверх того, что мы только что рассказали. Просто природа так действует — и все.
Давайте теперь взглянем на такую реакцию: p-попадает в протон. Вы можете, например, получить L0-частицу плюс нейтральный K-мезон — две нейтральные частицы. Какой же из нейтральных K-мезонов вы получите? Раз у L-частицы странность -1, а у p- и p+ странность нуль и поскольку перед нами быстрая реакция рождения, то странность измениться не должна. Вот K-частица и должна обладать странностью +1,—и быть поэтому К0. Реакция имеет вид
причем
(сохраняется).
Если бы здесь вместо К0стояло К°, то странность справа была бы -2, чего природа не позволит, ведь слева странность нуль.
С другой стороны, К° может возникать в других реакциях:
где
или
где
Вы можете подумать: «Не слишком ли много разговоров. Как узнать, это или K0? Выглядят-то они одинаково. Они античастицы друг друга, значит, массы их одинаковы, заряды у обеих равны нулю. Как вы их различите?» По реакциям, которые они вызывают. Например, -мезон может взаимодействовать с веществом, создавая L-частицу, скажем, так:
а K0-мезон не может. У К0 нет способа создать L-частицу, взаимодействуя с обычным веществом (протонами и нейтронами). Значит, экспериментальное отличие между К0- и -мезонами состояло бы в том, что один из них создает L-частицу, а другой— нет.
Одно из предсказаний теории странности тогда заключалось бы в следующем: если в опыте с пионами высокой энергии L-частица возникает вместе с нейтральным K-мезоном, тогда этот нейтральный K-мезон, попадая в другие массивы вещества, никогда не создаст L-частицы. Опыт мог бы протекать таким образом. Вы посылаете пучок p--мезонов в большую водородную пузырьковую камеру. След p- исчезает, но где-то в стороне появляется пара следов (протона и p- -мезона), указывающая на то, что распалась Λ-частица (фиг. 9.5). Тогда вы знаете, что где-то есть K0-мезон, который вам не виден.