Роджер Пенроуз - Новый ум короля: О компьютерах, мышлении и законах физики
210
Эти сравнения во многом обманчивы. Подавляющее большинство транзисторов в современных компьютерах используется в устройствах «памяти» и не участвует в логических операциях; а память можно наращивать за счет внешних устройств практически бесконечно. При более интенсивном использовании параллельных вычислений количество транзисторов, непосредственно участвующих в выполнении логических операций, могло бы быть значительно больше, чем это принято в настоящее время.
211
Дойч в своих описаниях предпочитает использовать подход «множественности миров» относительно квантовой теории. Однако важно понимать, что это совершенно не существенно, поскольку концепция квантового компьютера принципиально не зависит от точки зрения на традиционную квантовую механику.
212
Этот комментарий перестает быть правомерным, если мы рассматриваем в качестве «классических» компонентов системы шестеренки, оси и т. п. Я предполагаю, что система состоит из обычных (скажем, точечных или сферических) частиц.
213
По крайней мере, при наличии современных компьютерных технологий (см. обсуждение теста Тьюринга в главе 1).
214
Здесь можно упомянуть еще один непростой вопрос относительно того, могут ли два алгоритма рассматриваться как эквивалентные друг другу, если результаты их действий — но не сами вычисления! — являются тождественными. См. главу 2, «Универсальная машина Тьюринга».
215
Как мы видели в главе 4, «Теоремы геделевского типа как следствие результатов, полученных Тьюрингом»), проверка справедливости доказательства в формальной системе всегда имеет алгоритмический xaрактep. И наоборот, любой алгоритм, который позволяет получать математически истинные утверждения, всегда можно добавить в систему аксиом и правил вывода обычной логики («предикатного исчисления»), тем самым создавая новую формальную систему выведения математических истин.
216
Разумеется, «он» означает «она или он». См. сноску 22 к гл 1 «Тест Тьюринга».
217
Некоторых читателей может беспокоить тот факт, что в среде математиков действительно существуют различные точки зрения. Вспомним рассуждения, приведенные в главе 4. Однако имеющиеся разногласия не так важны для нас. Они относятся только к в высшей степени абстрактным вопросам, касающимся очень больших множеств, в то время как мы вполне можем ограничиться утверждениями арифметического характера (с конечным числом кванторов существования и всеобщности) и применить дальнейшие рассуждения. (Возможно, здесь допущено некоторое преувеличение, поскольку принцип рефлексии, относящийся к бесконечным множествам, может иногда использоваться для вывода утверждений в арифметике.) Что касается крайне догматичного и не желающего соглашаться с Геделем формалиста, для которого такая вещь, как математическая истина, вообще не существует, то я его буду просто-напросто игнорировать, поскольку он явно не обладает способностью интуитивного понимания истины, которой посвящены наши рассуждения! Конечно, математики иногда допускают ошибки. Кажется, сам Тьюринг считал, что именно это и есть «лазейка», которая позволяет обойти аргументы геделевского типа в пользу того, что человеческое мышление существенно неалгоритмично. Но лично мне кажется невероятным, что свойство людей ошибаться каким-либо образом связано с нашей способностью к прозрениям! (Между прочим, генераторы случайных чисел могут быть успешно реализованы при помоши алгоритмов.)
218
Термин «черная дыра» вошел во всеобщее употребление много позже, около 1968 года (главным образом благодаря пророческим идеям американского физика Джона А. Уилера).
219
Мне кажется, что потребность животных во сне, во время которого они иногда видят сны (как это бывает часто заметно у собак), может служить свидетельством того, что они, вполне вероятно, наделены сознанием. Ибо разница между сном без сновидений и сном со сновидениями, по-видимому, во многом определяется как раз наличием сознания.
220
В английском языке фраза Oh, I see! («О, я вижу!») по смыслу эквивалентна возгласу «О, я понимаю!». — Прим. ред.
221
В случае специальной или общей теории относительности под «временами» следует понимать «одновременные пространства» или «пространственно-подобные поверхности» (см. гл. 5 «Специальная теория относительности Эйнштейна и Пуанкаре» и гл.5 «Релятивистская причинность и детерминизм»).
222
Стоит отметить, что существует по меньшей мере один подход к квантовой теории гравитации, который, по-видимому, включает элемент невычислимости (Герох, Хартли [1986]).
223
Однако в случае пространственно-бесконечной вселенной есть затруднения, поскольку тогда возникает (как и в случае множественных миров) бесконечное количество копий наблюдателя и его непосредственного окружения! Будущее поведение каждой копии может несколько отличаться, и никто не в состоянии сказать наверняка, какой из приблизительных копий самого себя, смоделированных математическим путем, он мог бы на самом деле «быть»!
224
Даже в ходе реального роста некоторых кристаллов могут возникать подобные проблемы — например, там, где исходная клетка кристаллической решетки содержит несколько сот атомов (случай так называемых «фаз Фрэнка-Каспера»). С другой стороны, следует упомянуть, что теоретический «почти локальный» (хотя все же нелокальный) процесс роста квазикристаллов с осью пятого порядка был предложен Онодой, Стайнхардтом, Ди Винченцо и Соколаром [1988].
225
Эта симметрия между временем и пространством становится еще более удивительной в случае двумерного пространства-времени. Уравнения двумерной физики пространства-времени оказываются существенно симметричны относительно взаимозамены координат пространства и времени — однако, в двумерной физике никто не стал бы требовать от пространства, чтобы оно «текло». Трудно поверить, что «реальное течение» времени в нашем восприятии окружающего мира обусловлено разве что асимметрией между числом измерений пространства (3) и измерений времени (1), характерной для нашего пространства-времени.