Роджер Пенроуз - Новый ум короля: О компьютерах, мышлении и законах физики
е = 2,7182818285…,
а не по основанию 10, однако это различие в нашем случае совершенно несущественно. Натуральный логарифм, x =log n, числа n — это степень, в которую мы должны возвести е, чтобы получить n, т. е. решение уравнения ex = n (см. ссылку 62).
172
Было бы, конечно, неверным утверждать, что наша точка фазового пространства вообще никогда не достигнет ни одной из предшествующих областей меньшего объема. Если мы подождем достаточно долго, точка может снова оказаться внутри одного из них, несмотря на его ничтожно малый объем (в соответствии с теоремой о возвращении Пуанкаре.) Однако, в подавляющем большинстве случаев, соответствующие масштабы времен будут чудовищно велики, порядка
лет, в случае газа, собравшегося в сантиметровом кубике в одном из углов ящика. Это на много порядков больше времени существования вселенной. Я не собираюсь обсуждать эту возможность в дальнейшем из-за ее практической нереализуемости.
173
Во внутризвездных процессах слияния легких ядер (например, водорода) в более тяжелые (например, гелий или в конечный продукт — железо) энтропия возрастает. По этой причине водород, присутствующий на Земле, часть которого мы можем, в конце концов, использовать путем его превращения в гелий на термоядерных станциях, содержит много «низкой энтропии». Возможность увеличения энтропии таким способом возникает только благодаря тому, что гравитация собрала ядра вместе, вдали от того гораздо большего числа фотонов, которые рассеялись по всему пространству и в настоящий момент образуют чернотельное фоновое излучение с температурой 2,7 К (см. гл.7 «Источник низкой энтропии во Вселенной»). Это излучение заключает в себе существенно большую энтропию, чем та, которая содержится в веществе звезд и, если бы было возможно собрать это излучение и поместить его обратно в вещество звезд, то оно разложило бы большую часть тяжелых ядер на составляющие их более легкие ядра! Следовательно, прирост энтропии в процессе термоядерного синтеза является «временным» и возможен только благодаря концентрирующему воздействию гравитации. Позднее мы увидим, что, хотя энтропия, порождаемая в процессе термоядерного синтеза, намного превосходит энтропию, возникающую в большей части различных гравитационных процессов, а энтропия чернотельного фонового излучения оказывается еще большей — все это справедливо только временно и локально. Гравитационные запасы энтропии оказываются неизмеримо более мощными и существенно превосходят как энтропию термоядерного синтеза, так и энтропию фонового излучения.
174
Недавние результаты исследований сверхглубоких скважин на территории Швеции можно интерпретировать как подтверждающие теорию Голда, но ситуация далеко неоднозначна и может иметь альтернативное истолкование в рамках общепринятых геологических концепций.
175
Я предполагаю здесь, что эта звезда относится к так называемому «типу II» сверхновых. Если бы это была сверхновая «типа I», мы могли бы опять вести рассуждения в терминах «временного» прироста энтропии, связанного с термоядерным синтезом (см. примечание 173). Вряд ли, однако, сверхновая «типа I» способна произвести много урана.
176
В настоящее время эта цифра уточняется. Современные оценки возраста Вселенной колеблются между 6 х 109 и 1,5 х 1010 лет. В любом случае эти цифры намного превосходят те 109лет, которые полагались в качестве оценки возраста Вселенной сразу после открытия ее расширения Эдвином Хабблом приблизительно в 1930 году.
177
Я отношу модели с нулевой и отрицательной пространственной кривизной к бесконечным моделям. Есть, однако, возможность некоторой «свертки» этих моделей, после которой они становятся пространственно конечными. Такое рассмотрение, которое вряд ли применимо к реальной вселенной, существенно не меняет ход нашего обсуждения, и поэтому я предлагаю не заострять здесь внимание на этом вопросе.
178
Эйнштейн ввел в теорию космологическую постоянную в 1917 году, но впоследствии, в 1931 году, отказался от нее, говоря о ней как о своей «самой большой ошибке».
179
Экспериментальные основания для такой уверенности заключаются, главным образом, в данных двух типов. Во-первых — это поведение частиц при их столкновениях друг с другом на различных скоростях: рассеяние, распад и рождение новых частиц. Эти процессы изучаются либо на ускорителях, построенных и размещенных в самых разных уголках Земли, либо с помощью космических лучей, бомбардирующих Землю из открытого космоса. Во-вторых, известно, что параметры, регулирующие взаимодействие частиц, не изменились даже на одну миллионную за 1010 лет (см. Барроу [1988]), так что, скорее всего, они существенно и не менялись (если менялись вообще) со времен первичного протошара.
180
В действительности, на этой конечной стадии карлик будет светиться как красная звезда, но то, что называют «красными карликами», относится к звездам совсем другого типа.
181
На самом деле, принцип Паули не запрещает электронам находиться в одном и том же месте, я запрещает им находиться лишь в одном и том же «состоянии», учитывающем их движение и вращение (спин). Применение этого принципа в рассматриваемом случае связано с определенными тонкостями, и в первое время расценивалось некоторыми (особенно Эддингтоном) как достаточно спорное.
182
Похожие соображения были высказаны уже в 1784 году английским астрономом Джоном Мичеллом и, немного позднее и независимо от него, Лапласом. Они пришли к выводу, что наиболее массивные и плотные тела во вселенной могут оказаться совершенно невидимыми — как и черные дыры — но их (поистине пророческие) выводы были сделаны на основе ньютоновской теории, в которой подобные заключения являются, в лучшем случае, спорными. Надлежащий общерелятивистский подход был разработан Робертом Оппенгеймером и Хартландом Снайдером [1939].
183
На самом деле, точное положение горизонта (в общем случае нестационарной) черной дыры не может быть установлено непосредственными измерениями. В частности, для его определения необходимо обладать информацией о том веществе, которое черная дыра поглотит в будущем!
184
Делая подобное утверждение, я неявно ввожу следующие два допущения. Первое заключается в том, что возможному полному окончательному исчезновению черной дыры — с учетом ее (чрезвычайно медленного) хокинговского радиационного «испарения», которое мы рассмотрим чуть позже (см.: глава 7 «Насколько особым был Большой взрыв?») — будет предшествовать окончательный коллапс вселенной; второе допущение — (весьма правдоподобное), известно под названием «космическая цензура» (см.: Глава 5. «Релятивистская причинность и детерминизм»).
185
Смотри изложение этого вопроса в работах Белинского, Халатникова и Лифшица [1970] и Пенроуза [1979].
186
Возникает искушение отождествить гравитационный вклад в энтропию системы с некоторой мерой вейлевской кривизны, но до сих пор ни одной подходящей меры не найдено. (Искомая мера, вообще говоря, должна была бы обладать нелокальными свойствами.) К счастью, в наших рассуждениях мы можем обойтись и без нее.
187
Существует популярная в настоящее время точка зрения, называемая «инфляционным сценарием», которая призвана объяснить, почему вселенная, помимо всего прочего, является однородной на очень больших масштабах. Согласно этой теории, вселенная на очень ранних стадиях испытала гигантское расширение — намного превосходящее по своим масштабам «обычное» расширение стандартного сценария. Идея заключается в том, что любые нерегулярности сглаживаются в результате такого расширения. Однако, инфляция не работает без наложения еще более жестких начальных ограничений, чем те, которые уже даются гипотезой о вейлевской кривизне. Она не вводит в теорию никакой асимметричной во времени составляющей, которая дала бы возможность объяснить различие между начальной и конечной сингулярностью. (Более того, она опирается на физические теории — теории великого объединения — чей статус не более, чем ПРОБНЫЙ, по терминологии главы 5. Для более подробного знакомства с критическим анализом «инфляции», в контексте идей, изложенных в этой главе, см. Пенроуз [19896].)