Несса Кэри - Мусорная ДНК. Путешествие в темную материю генома
Такие эпигенетические модификации — не просто голубенькие или розовенькие украшения, показывающие, кто предоставил вам копию гена. Эти модификации контролируют экспрессию определенных генов таким образом, чтобы в каждой паре один включался (скажем, тот, что унаследован от отца), а другой (в данном случае — доставшийся от матери) выключался. Этот процесс называется импринтингом («впечатыванием»): в гены «впечатывается» информация об их происхождении (то есть от кого из родителей они унаследованы).
Обычно то, что клетка экспрессирует две копии гена, кодирующего белок, предоставляет ей своего рода страховку. Даже если одна из копий претерпит мутацию или окажется неправомерно подавленной посредством аномальных эпигенетических модификаций, у клетки все равно останется запасная, нормальная копия. Но если одна из таких копий отключилась из-за импринтинга, клетка становится более подверженной случайному отключению другой копии. Однако некоторые гены в клетке все-таки идут на такой риск, что означает: преимущества импринтинга должны перевешивать его недостатки.
Не случайно такая система возникла лишь у млекопитающих. Самки млекопитающих вносят необычайно большой вклад в развитие своего потомства. Они долго держат детеныша внутри своего тела, делясь с отпрыском питательными веществами через плаценту. Ну да, многие представительницы других классов тоже очень заботятся о своем потомстве. Птицы высиживают яйца, крокодилы хитроумно располагают кладку в гнезде, тщательно регулируя ее температуру. Однако ни у какого другого класса самка не кормит развивающийся эмбрион столь обильно и активно.
Уровень материнской заботливости сдерживается эволюционными причинами. Чтобы успешно передать гены детенышу, самка млекопитающего предпочла бы иметь несколько шансов на такую передачу. Вполне возможно, что ей могут встретиться на жизненном пути другие партнеры, более подходящие (в эволюционном смысле), чем тот, чье потомство она сейчас несет в себе. Поэтому, хотя она многое вкладывает в каждую беременность, самка обладает способностью спариваться неоднократно, что вполне логично. При этом она получит явные эволюционные преимущества, если постарается сделать так, чтобы развивающийся эмбрион (или эмбрионы) получал от нее достаточно питательных веществ. Благодаря этому он будет иметь более высокие шансы на выживание и последующее размножение. Однако не стоит отвлекать на эмбрион такое количество питательных веществ, чтобы их не хватало матери. Во всяком случае, она не должна в результате погибать или утрачивать способность давать потомство.
А вот с самцом история несколько иная. Если его потомок вытянет из матери столько соков, что она больше не сможет размножаться, самцу на это будет, в общем, наплевать. В эволюционном смысле он хочет от наследника лишь одного: чтобы он питался как можно лучше и был как можно сильнее. Тогда у него будут наивысшие шансы на успешное достижение половой зрелости и передачу генов собственным потомкам. Самец, скорее всего, будет спариваться и с другими самками: лишь сравнительно небольшое число видов млекопитающих образует пару на всю жизнь.
Самки млекопитающих не в состоянии решать, какую долю питательных веществ передавать эмбриону, обитающему в утробе. Это вам не птицы — те-то могут раньше времени бросить гнездо. Поэтому эволюция добилась эпигенетического перемирия в этой гонке питательных вооружений. Возник механизм импринтинга, позволяющий сбалансировать конкурирующие требования мужского и женского вклада в геном. У небольшого количества генов эпигенетические модификации ДНК, наследуемой от отца, задают характер генетической экспрессии, способствующий росту эмбриона. Но у тех же генов иной характер генетической экспрессии, задаваемый эпигенетическими модификациями ДНК, наследуемой от матери, оказывает на эмбрион противоположное действие.
В ходе развития эмбриона определенные отцовские гены часто способствуют экспрессии большой и эффективной плаценты, ведь именно этот орган питает эмбрионы. Вот почему при пузырном заносе, когда весь генетический материал поступает от отца, развивается аномальная и очень крупная плацента.
Отключение посредством включения
Среди генов, кодирующих белки, импринтингу подвергаются немногие. У мышей таких генов около 1402. Они образуют кластеры из 2-12 генов. Многие из этих кластеров довольно похожи на аналогичные кластеры, существующие в человеческом геноме3. Кстати, у сумчатых количество генов, подвергающихся импринтингу, гораздо ниже, ведь эти животные кормят свое потомство в утробе относительно недолго4.
Определяющий компонент каждого такого кластера — область мусорной ДНК, которая управляет экспрессией генов, кодирующих белки. Этот определяющий компонент называется областью, контролирующей импринтинг (ОКИ, imprinting control element, ICE). Представьте, что вам надо осветить комнату при помощи двенадцати лампочек. Если вы хотите менять уровень освещенности, можно использовать лампочки с разной светимостью и отдельные выключатели для каждой. Но это довольно трудоемкий способ контролирования общего уровня освещенности. Лучше организовать всю эту дюжину лампочек в единую цепь и управлять ими одновременно — с помощью обычного выключателя или реостата (если вам хочется большей плавности).
ОКИ действует как общий реостат, однако тут есть небольшое отличие от нашей электрической аналогии. ОКИ играет важную роль благодаря тому, что она способствует экспрессии длинной некодирующей РНК. Эта РНК способна подавлять экспрессию генов окружающего кластера. По сути, импринтинг зависит от двух типов мусорной ДНК: геномных областей, контролирующих импринтинг, и тех длинных некодирующих РНК, на которые ОКИ оказывают контролирующее действие. Если в определенном кластере включается длинная некодирующая РНК, она подавляет экспрессию входящих в этот кластер генов, кодирующих белки. С другой стороны, если длинная некодирующая РНК, управляемая ОКИ, подавляется, то гены кластера, кодирующие белки, могут активироваться.
Импринтинг в высочайшей степени зависит от мусорной ДНК и ее общения с эпигенетической системой. Область, контролирующую импринтинг, можно эпигенетически модифицировать. Экспрессия длинной некодирующей РНК зависит от того, метилирована ли ДНК в области, контролирующей импринтинг. Если метилирована, то это препятствует экспрессии данной некодирующей РНК. Если же ОКИ избежала метилирования, эта длинная некодирующая РНК все же будет экспрессироваться. В сущности, тут идут взаимозависимые процессы. Если длинная некодирующая РНК экспрессируется, то гены, расположенные в кластере на той же хромосоме, будут подавляться. Если же длинная некодирующая РНК не экспрессируется, гены, расположенные в кластере на той же хромосоме, будут включаться. Длинная некодирующая РНК в зонах, подвергшихся импринтингу, иногда может иметь невероятную длину, доходящую до 1 миллиона нуклеотидных оснований: ошеломляющая цифра5.
К сожалению, мы пока довольно поверхностно разбираемся в конкретных механизмах, используемых длинной некодирующей РНК для подавления экспрессии близлежащего кластера генов. Здесь тоже наверняка не обошлось без эпигенетической системы, которая помогла внести репрессивные эпигенетические модификации в гены, кодирующие белки. Если в развивающемся эмбрионе подавляются ключевые эпигенетические гены (скажем, главный репрессор, с которым мы познакомились в главе 9), некоторые из генов, подвергшихся импринтингу, экспрессируются, хотя при обычных условиях они бы оставались в выключенном состоянии6. И это верно не только для главного репрессора. Выключение других эпигенетических генов, порождающих репрессивные гистонные модификации, оказывает похожее воздействие7,8. Это лишний раз показывает, какую важную роль играет эпигенетическая система в выполнении инструкций, содержащихся в длинной некодирующей РНК. Вероятно, такие процессы происходят благодаря тому, что длинная некодирующая РНК привлекает соответствующие ферменты к кластеру, подвергшемуся импринтингу, тем самым таргетируя гистонные модификации генов, кодирующих белки.
Эпигенетические модификации есть и в самой ОКИ. Как и следовало ожидать, при метилировании ДНК в области, контролирующей импринтинг, именно гистонные модификации непосредственно влияют на отключение генов. Если же ОКИ не метилирована, то эти гистонные модификации влияют на включение генов. Характер распределения эпигенетических модификаций в ОКИ — один и тот же и во всей ДНК, и в ее гистонах9.
В ходе импринтинга определяющим фактором является то, метилирована ли мусорная ДНК, образующая эту область. Высказываются предположения, что сам процесс метилирования областей, контролирующих импринтинг, возник, когда подавление близлежащих паразитических элементов (мы описывали такие элементы в главе 4) стало распространяться и на соседние зоны. Возможно, это создало преимущество с точки зрения приспособленности, поэтому в ходе естественного отбора такая особенность передалась и последующим поколениям10. Но вот один интригующий факт. У самых примитивных млекопитающих — яйцекладущих существ вроде утконоса и ехидны — необычно мало паразитических элементов близ тех регионов генома, где мы могли бы ожидать найти области, контролирующие импринтинг у более высокоразвитых млекопитающих11.