Несса Кэри - Мусорная ДНК. Путешествие в темную материю генома
Эпигенетика и экспансия
Общение между эпигенетической системой и мусорной ДНК также одна из причин влияния некоторых генетических мутаций на организм. Классический пример — синдром ломкой X-хромосомы, описанный в главах 1 и 2. Мутация, вызывающая это заболевание, сводится к увеличению количества повторов триплета ЦЦГ (к экспансии этого триплета). Иногда в результате появляются тысячи его копий. Повторяющийся элемент содержит основание Ц, за которым следует основание Г: перед нами та самая последовательность ЦГ, о которой мы говорили выше как о мишени для метилирования ДНК. Когда количество повторов этой мусорной последовательности становится чрезвычайно большим, она теряет устойчивость к воздействию белков и ферментов, добавляющих метильную группу в ЦЦГ-мотив. В итоге клетка уже не может экспрессировать белок ломкой X-хромосомы. Следствие такого взаимодействия между мусорной ДНК и эпигенетической системой — целая человеческая жизнь, отягощенная трудностями в обучении и социальном общении.
Рис. 9.1. Вверху: вставка усиливает экспрессию гена агути, что приводит к появлению толстой желтой мыши. Внизу: вставку модифицировали путем метилирования ДНК. Теперь вставка уже не влияет на экспрессию гена агути. Результат — худая бурая мышь.
Глава 10. Почему родителям так нравится мусор
Одна из первых библейских историй, с которыми знакомятся дети, воспитываемые в иудео-христианской традиции, повествует о сотворении мира. В Книге Бытия рассказывается о том, как Бог творит землю, небо и все, что на них есть. В конце концов Он создает Адама и Еву. Далее освоение нашего мира становится задачей этой парочки и их потомков. Жизнь людей идет уже без всякого Божественного вмешательства (если не считать известного христианского сюжета, о котором идет речь в Новом Завете).
История об Адаме и Еве прочно впечаталась в человеческое сознание. Возможно, это причина (или отражение) укорененного в нас простого биологического представления. Оно сводится к следующему: чтобы произвести на свет ребенка, нужны мужчина и женщина. С биологической точки зрения невозможно создать дитя при помощи двух мужчин, двух женщин или одной-единственной женщины.
Это кажется биологической данностью. Усомниться в ней практически никогда и никому не приходит в голову. Ведь человек, подобно всем прочим живородящим млекопитающим, принадлежит к единственному классу животных, где никогда не происходит «непорочного» рождения. Для появления потомства яйцеклетку млекопитающего должен оплодотворить сперматозоид. Однако во всех прочих классах встречаются примеры самок, которые порождают живых отпрысков без всякого спаривания. И это не ограничивается низшими классами вроде насекомых. На такое способны некоторые виды рыб, амфибий, рептилий и даже птиц. А вот млекопитающие так делать не умеют. Это позволяет предположить, что такой запрет на однополое воспроизводство (девственное размножение, партеногенез) возник сравнительно недавно (по эволюционным меркам), вскоре после отделения друг от друга эволюционных ветвей млекопитающих и пресмыкающихся, то есть немногим более 300 миллионов лет назад.
Можно предположить, что такая неспособность млекопитающих к партеногенезу — скорее вопрос доставки генетического материала, чем следствие каких-то фундаментальных биологических причин. Вероятно, две яйцеклетки млекопитающих просто не могут слиться, а значит, не могут и образовать зиготу, которая затем даст начало всем остальным клеткам нового организма. Следовательно, млекопитающим нужен для размножения донор мужского пола, ибо только сперматозоид способен проникнуть в яйцеклетку и доставить по назначению свой груз ДНК. Ну да, яйцеклетки млекопитающих при обычных условиях действительно не могут сливаться друг с другом. Но это не очень-то удачное объяснение. Реальное объяснение куда интереснее. Его продемонстрировали в ходе серии изящных экспериментов в середине 1980-х годов. Модельной системой, как частенько бывает, служили мыши.
Экспериментаторы выделили оплодотворенные мышиные яйцеклетки и удалили ядро из каждой такой яйцеклетки. Затем они ввели в эти яйцеклетки ядра из других яйцеклеток или из сперматозоидов, после чего поместили их в матку мышиной самки-реципиента. Результаты схематически показаны на рис. 10.1.
Живые мыши в таких случаях появлялись на свет, если яйцеклетку одновременно снабжали ядром другой яйцеклетки и ядром сперматозоида. Если в яйцеклетку одновременно встраивали два ядра других яйцеклеток или два ядра сперматозоидов, эмбрионы некоторое время развивались, но очень скоро погибали. С генетической точки зрения это выглядело весьма непонятно. Ведь во всех трех системах «восстановленная» яйцеклетка содержала нужное количество ДНК. В смысле ДНК-последовательности нет особой разницы между ДНК сперматозоида и ДНК яйцеклетки. К тому же эксперименты специально проводили так, чтобы донорские яйцеклетка и сперматозоид давали реципиенту по одной X-хромосоме. Во всех трех случаях использовались одни и те же ДНК-последовательности. Однако живое потомство рождалось лишь в том случае, когда эти ДНК-последовательности одновременно предоставляли самец и самка1.
Рис. 10.1. Если в «пустую» яйцеклетку, утратившую собственное ядро, встроить ядро другой яйцеклетки и ядро сперматозоида, в результате появится на свет живая мышь. Если встроить в нее два ядра яйцеклеток или два ядра сперматозоидов, получившиеся эмбрионы не будут развиваться нормально. Однако во всех трех случаях мы имеем дело с одной и той же генетической информацией.
Мы почти уверены, что такое требование одновременного присутствия яйцеклетки и сперматозоида применимо не только к мышам. У человеческих особей встречается заболевание, именуемое пузырным заносом (хориоаденомой, доброкачественной гестационной трофобластической болезнью). Женщина, страдающая им, может казаться беременной, набирать вес, часто испытывать острую утреннюю тошноту. Однако сканирование тела выявляет у нее лишь аномально увеличенную плаценту, полную пузырей с жидкостью, а никакого эмбриона не обнаруживается. В среднем на каждые 1200 беременностей наблюдают один случай пузырного заноса, хотя в некоторых азиатских популяциях этим заболеванием страдает одна из 200 беременных. Возникшее образование спонтанно абортируется примерно через 4-5 месяцев после оплодотворения, хотя в странах с развитой пренатальной медициной врачи удаляют его раньше, чтобы предотвратить развитие потенциально опасных опухолей.
Генетический анализ такой аномалии дает массу ценной информации. Оказывается, в большинстве случаев пузырный занос возникает, когда сперматозоид попадает в яйцеклетку, в которой почему-то нет ядра. Все 23 хромосомы сперматозоида честно копируются, и количество хромосом, как и положено, становится равным 46. Примерно в одной пятой случаев пузырный занос происходит, когда два сперматозоида одновременно проникают в одну из необычных безъядерных яйцеклеток: при этом, опять-таки, в ней оказывается правильное количество хромосом. Как и в вышеизложенных экспериментах с мышами, пузырное образование содержит нужное число хромосом, однако их дает лишь один из родителей, что и приводит к серьезным нарушениям развития эмбриона.
Случаи пузырного заноса и опыты на мышах показали нечто весьма фундаментальное. Они продемонстрировали, что гаметы (яйцеклетка и сперматозоид) снабжают будущий организм еще какой-то информацией помимо генетического кода. Ведь наблюдаемые явления попросту невозможно объяснить, исходя лишь из количества ДНК или характера ДНК-последовательности. В сущности, это явление относится к области эпигенетики. Теперь нам известно, что на молекулярном уровне оно объясняется взаимодействием эпигенетической системы с мусорной ДНК.
Откуда берется ДНК
Ученые обнаружили: некоторые области ДНК несут в себе эпигенетические модификации, как бы сообщающие: «Я — от матери» или «Я — от отца». Это так называемый родительский эффект (parent-of-origin effect). В этих областях генома для нормального развития требуется, чтобы потомок унаследовал одну копию определенного гена (или генов) от матери и одну — от отца.
Такие эпигенетические модификации — не просто голубенькие или розовенькие украшения, показывающие, кто предоставил вам копию гена. Эти модификации контролируют экспрессию определенных генов таким образом, чтобы в каждой паре один включался (скажем, тот, что унаследован от отца), а другой (в данном случае — доставшийся от матери) выключался. Этот процесс называется импринтингом («впечатыванием»): в гены «впечатывается» информация об их происхождении (то есть от кого из родителей они унаследованы).