KnigaRead.com/
KnigaRead.com » Компьютеры и Интернет » Программирование » Иван Братко - Программирование на языке Пролог для искусственного интеллекта

Иван Братко - Программирование на языке Пролог для искусственного интеллекта

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Иван Братко, "Программирование на языке Пролог для искусственного интеллекта" бесплатно, без регистрации.
Перейти на страницу:

5.2. Следующие отношения распределяют числа на три класса - положительные, нуль и отрицательные:

класс( Число, положительные) :- Число > 0.

класс( 0, нуль).

класс( Число, отрицательные) :- Число < 0.

Сделайте эту процедуру более эффективной при помощи отсечений.

5.3. Определите процедуру

разбить( Числа, Положительные, Отрицательные)

которая разбивает список чисел на два списка: список, содержащий положительные числа (и нуль), и список отрицательных чисел. Например,

разбить( [3, -1, 0, 5, -2], [3, 0, 5], [-1, -2] )

Предложите две версии: одну с отсечением, другую — без.

5.3. Отрицание как неуспех

"Мэри любит всех животных, кроме змей". Как выразить это на Прологе? Одну часть этого утверждения выразить легко: "Мэри любит всякого X, если X — животное". На Прологе это записывается так:

любит( мэри, X) :- животное ( X).

Но нужно исключить змей. Это можно сделать, использовав другую формулировку:

 Если X — змея, то "Мэри любит X" — не есть истина,

 иначе, если X — животное, то Мэри любит X.

Сказать на Прологе, что что-то не есть истина, можно при помощи специальной цели fail (неуспех), которая всегда терпит неудачу, заставляя потерпеть неудачу и ту цель, которая является ее родителем. Вышеуказанная формулировка, переведенная на Пролог с использованием fail, выглядит так:

любит( мэри, X) :-

 змея( X),  !,  fail.

любит( Мэри, X) :-

 животное ( X).

Здесь первое правило позаботится о змеях: если X — змея, то отсечение предотвратит перебор (исключая таким образом второе правило из рассмотрения), а fail вызовет неуспех. Эти два предложения можно более компактно записать в виде одного:

любит( мэри, X):-

 змея( X), !, fail;

 животное ( X).

Ту же идею можно использовать для определения отношения

различны( X, Y)

которое выполняется, если X и Y не совпадают. При этом, однако, мы должны быть точными, потому что "различны" можно понимать по-разному:

• X и Y не совпадают буквально;

• X и Y не сопоставимы;

• значения арифметических выражений X и Y не равны.

Давайте считать в данном случае, что X и Y различны, если они не сопоставимы. Вот способ выразить это на Прологе:

 Если X и Y сопоставимы, то

  цель различны( X, Y) терпит неуспех

  иначе цель различны( X, Y) успешна.

Мы снова используем сочетание отсечения и fail:

различны( X, X) :- !, fail.

различны( X, Y).

То же самое можно записать и в виде одного предложения:

различны( X, Y) :-

 X = Y, !, fail;

 true.

Здесь true — цель, которая всегда успешна.

Эти примеры показывают, что полезно иметь унарный предикат "not" (не), такой, что

nоt( Цель)

истинна, если Цель не истинна. Определим теперь отношение not следующим образом:

 Если Цель успешна, то not( Цель) неуспешна,

 иначе not( Цель) успешна.

Это определение может быть записано на Прологе так:

not( P) :-

 P, !, fail;

 true.

Начиная с этого момента мы будем предполагать, что  not — это встроенная прологовская процедура, которая ведет себя так, как это только что было определено. Будем также предполагать, что оператор not определен как префиксный, так что цель

not( змея( X) )

можно записывать и как

not змея( X)

Многие версии Пролога поддерживают такую запись. Если же приходится иметь дело с версией, в которой нет встроенного оператора not, его всегда можно определить самим.

Следует заметить, что not, как он здесь определен с использованием неуспеха, не полностью соответствует отрицанию в математической логике. Эта разница может породить неожиданности в поведении программы, если оператором not пользоваться небрежно. Этот вопрос будет рассмотрен в данной главе позже.

Тем не менее not — полезное средство, и его часто можно с выгодой применять вместо отсечения. Наши два примера можно переписать с not:

любит( мэри, X) :-

 животное ( X),

 not змея( X).


различны( X, Y) :-

 not( X = Y).

Это, конечно, выглядит лучше, нежели наши прежние формулировки. Вид предложений стал более естественным, и программу стало легче читать.

Нашу программу теннисной классификации из предыдущего раздела можно переписать с использованием not так, чтобы ее вид был ближе к исходным определениям наших трех категорий:

класс( X, боец) :-

 победил( X, _ ),

 победил( _, X).


класс( X, победитель) :-

 победил( X, _ ),

 not победил( _, X).


класс( X, спортсмен) :-

 not победил( X, _ ).

В качестве еще одного примера использования not рассмотрим еще раз программу 1 для решения задачи о восьми ферзях из предыдущей главы (рис. 4.7). Мы определили там отношение небьет между некоторым ферзем и остальными ферзями. Это отношение можно определить также и как отрицание отношения "бьет". На рис. 5.3 приводится соответствующим образом измененная программа.


решение( []).

решение( [X/Y | Остальные] ) :-

 решение( Остальные),

 принадлежит( Y, [1, 2, 3, 4, 5, 6, 7, 8] ),

 not бьет( X/Y, Остальные).


бьет( X/Y, Остальные) :-

 принадлежит( X1/Y1, Остальные),

 ( Y1 = Y;

   Y1 is Y + X1 - X;

   Y1 is Y - X1 + X ).

 принадлежит( А, [А | L] ).


принадлежит( А, [В | L] ) :-

 принадлежит( А, L).


% Шаблон решения

шаблон( [1/Y1, 2/Y2, 3/Y3, 4/Y4, 5/Y5, 6/Y6, 7/Y7, 8/Y8]).

Рис. 5.3.  Еще одна программа для решения задачи о восьми ферзях.


Упражнения

5.4. Даны два списка Кандидаты и Исключенные, напишите последовательность целей (используя принадлежит и not), которая, при помощи перебора, найдет все элементы списка Кандидаты, не входящие в список Исключенные.

5.5. Определите отношение, выполняющее вычитание множеств:

разность( Множ1, Множ2, Разность)

где все три множества представлены в виде списков. Например,

разность( [a, b, c, d], [b, d, e, f], [a, c] )

Посмотреть ответ

5.6. Определите предикат

унифицируемые( Спис1, Терм, Спис2)

где Спис2 — список всех элементов Спис1, которые сопоставимы с Терм'ом, но не конкретизируются таким сопоставлением. Например:

?-  унифицируемые( [X, b, t( Y)], t( a), Спис).

Спис = [ X, t( Y)]

Заметьте, что и X и Y должны остаться неконкретизированными, хотя сопоставление с t( a) вызывает их конкретизацию. Указание: используйте not ( Терм1 = Терм2). Если цель Терм1 = Терм2 будет успешна, то not( Терм1 = Tepм2) потерпит неудачу и получившаяся конкретизация будет отменена!

5.4. Трудности с отсечением и отрицанием

Используя отсечение, мы кое-что выиграли, но не совсем даром. Преимущества и недостатки применения отсечения были показаны на примерах из предыдущих разделов. Давайте подытожим сначала преимущества:

(1) При помощи отсечения часто можно повысить эффективность программы. Идея состоит в том, чтобы прямо сказать пролог-системе: не пробуй остальные альтернативы, так как они все равно обречены на неудачу.

(2) Применяя отсечение, можно описать взаимоисключающие правила, поэтому есть возможность запрограммировать утверждение:

 если условие P, то решение Q,

 иначе решение R

Выразительность языка при этом повышается.

Ограничения на использование отсечения проистекают из того, что есть опасность потерять такое важное для нас соответствие между декларативным и процедурным смыслами программы. Если в программе нет отсечений, то мы можем менять местами порядок предложений и целей, что повлияет только на ее эффективность, но не на декларативный смысл. Если же отсечения в ней присутствуют, то изменение порядка предложений может повлиять на ее декларативный смысл. Это значит, что программа с измененным порядком, возможно, будет давать результаты, отличные от результатов исходной программы. Вот пример, демонстрирующий этот факт:

p :- а, b.

p :- с.

Декларативный смысл программы: p истинно тогда и только тогда, когда истинны одновременно и а, и b или истинно с. Это можно записать в виде такой логической формулы:

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*