KnigaRead.com/
KnigaRead.com » Компьютеры и Интернет » Программирование » Иван Братко - Программирование на языке Пролог для искусственного интеллекта

Иван Братко - Программирование на языке Пролог для искусственного интеллекта

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Иван Братко, "Программирование на языке Пролог для искусственного интеллекта" бесплатно, без регистрации.
Перейти на страницу:

Более точный смысл механизма отсечений можно сформулировать следующим образом:

Назовем "целью-родителем" ту цель, которая сопоставилась с головой предложения, содержащего отсечение. Когда в качестве цели встречается отсечение, такая цель сразу же считается успешной и при этом заставляет систему принять те альтернативы, которые были выбраны с момента активизации цели-родителя до момента, когда встретилось отсечение. Все оставшиеся в этом промежутке (от цели-родителя до отсечения) альтернативы не рассматриваются.

Чтобы прояснить смысл этого определения, рассмотрим предложение вида

H :- В1, В2, ..., Вm, !, ..., Вn.

Будем считать, что это предложение активизировалось, когда некоторая цель G сопоставилась с H. Тогда G является целью-родителем. В момент, когда встретилось отсечение, успех уже наступил в целях В1, …, Вm. При выполнении отсечения это (текущее) решение В1, …, Вm "замораживается" и все возможные оставшиеся альтернативы больше не рассматриваются. Далее, цель G связывается теперь с этим предложением: любая попытка сопоставить  G  с головой какого-либо другого предложения пресекается.

Применим эти правила к следующему примеру:

С :- P, Q, R, !, S, T, U.

С :- V.

А :- В, С, D.

?- А.

Здесь А, В, С, D, P и т.д. имеют синтаксис термов. Отсечение повлияет на вычисление цели С следующим образом. Перебор будет возможен в списке целей P, Q, R; однако, как только точка отсечения будет достигнута, все альтернативные решения для этого списка изымаются из рассмотрения. Альтернативное предложение, входящее в С:

С :- V.

также не будет учитываться. Тем не менее, перебор будет возможен в списке целей S, T, U. "Цель-родитель" предложения, содержащего отсечения, — это цель С в предложении

А :- В, С, D.

Поэтому отсечение повлияет только на цель С. С другой стороны, оно будет "невидимо" из цели А. Таким образом, автоматический перебор все равно будет происходить в списке целей В, С, D, вне зависимости от наличия отсечения в предложении, которое используется для достижения С.

5.2. Примеры, использующие отсечение 

5.2.1.  Вычисление максимума

Процедуру нахождения наибольшего из двух чисел можно запрограммировать в виде отношения

mах( X, Y, Мах)

где Мах = X, если X больше или равен Y, и Мах есть Y, если X меньше Y. Это соответствует двум таким предложениям:

mах( X, Y, X) :- X >= Y.

max( X, Y, Y) :- X < Y.

Эти правила являются взаимно исключающими. Если выполняется первое, второе обязательно потерпит неудачу. Если неудачу терпит первое, второе обязательно должно выполниться. Поэтому возможна более экономная формулировка, использующая понятие "иначе":

 если X ≥ Y, то Мах = X,

 иначе Мах = Y.

На Прологе это записывается при помощи отсечения:

mах( X, Y, X) :- X >= Y,  !.

mах( X, Y, Y).

5.2.2. Процедура проверки принадлежности списку, дающая единственное решение

Для того, чтобы узнать, принадлежит ли X списку L, мы пользовались отношением

принадлежит( X, L)

Программа была следующей:

принадлежит( X, [X | L] ).

принадлежит X, [Y | L] ) :- принадлежит( X, L).

Эта программа дает "недетерминированный" ответ: если X встречается в списке несколько раз, то будет найдено каждое его вхождение. Исправить этот недостаток не трудно: нужно только предотвратить дальнейший перебор сразу же после того, как будет найден первый X, а это произойдет, как только в первом предложении наступит успех. Измененная программа выглядит так:

принадлежит( X, [X | L] ) :- !.

принадлежит( X, [Y | L] ) :- принадлежит( X, L).

Эта программа породит только одно решение. Например:

?- принадлежит( X, [а, b, с] ).


X = а;

nо    (нет)

5.2.3. Добавление элемента к списку, если он в нем отсутствует (добавление без дублирования)

Часто требуется добавлять элемент X в список L только в том случае, когда в списке еще нет такого элемента. Если же X уже есть в L, тогда L необходимо оставить без изменения, поскольку нам не нужны лишние дубликаты X. Отношение добавить имеет три аргумента:

добавить( X, L, L1)

где X — элемент, который нужно добавить, L — список, в который его нужно добавить, L1 — результирующий новый список. Правила добавления можно сформулировать так:

 если X принадлежит к L, то L1 = L,

 иначе L1 — это список L с добавленным к нему элементом X.

Проще всего добавлять X в начало списка L так, чтобы X стал головой списка L1. Запрограммировать это можно так:

добавить( X, L, L) :- принадлежит( X, L), !.

добавить( X, L, [X | L] ).

Поведение этой процедуры можно проиллюстрировать следующим примером:

?- добавить( а, [b,с], L).

L = [a, b, c]


?- до6авить( X, [b, с], L).

L = [b, с]

X = b


?- добавить( а, [b, с, X], L).

L = [b, с, а]

X = а

Этот пример поучителен, поскольку мы не можем легко запрограммировать "недублирующее добавление", не используя отсечения или какой-либо другой конструкции, полученной из него. Если мы уберем отсечение в только что рассмотренной программе, то отношение добавить будет добавлять дубликаты элементов, уже имеющихся в списке. Например:

?- добавить( a, [a, b, c], L),

L = [а, b, с]

L = [а, а, b, с]

Поэтому отсечение требуется здесь для правильного определения отношения, а не только для повышения эффективности. Этот момент иллюстрируется также и следующим примером.

5.2.4. Задача классификации объектов

Предположим, что у нас есть база данных, содержащая результаты теннисных партий, сыгранных членами некоторого клуба. Подбор пар противников для каждой партия не подчинялся какой-либо системе, просто каждый игрок встречался с несколькими противниками. Результаты представлены в программе в виде фактов, таких как

победил( том, джон).

победил( энн, том).

победил( пат, джим).

Мы хотим определить

отношение класс( Игрок, Категория)

которое распределяет игроков по категориям. У нас будет три категории:

 победитель — любой игрок, победивший во всех сыгранных им играх

 боец — любой игрок, в некоторых играх победивший, а в некоторых проигравший

 спортсмен — любой игрок, проигравший во всех сыгранных им партиях

Например, если в нашем распоряжении есть лишь приведенные выше результаты, то ясно, что Энн и Пат — победители. Том — боец и Джим — спортсмен.

Легко сформулировать правило для бойца:

 X — боец, если существует некоторый Y, такой, что X победил Y, и

  существует некоторый Z, такой, что Z победил X.

Теперь правило для победителя:

 X — победитель, если

  X победил некоторого Y и

  X не был побежден никем.

Эта формулировка содержит отрицание "не", которое нельзя впрямую выразить при помощи тех возможностей Пролога, которыми мы располагаем к настоящему моменту. Поэтому оказывается, что формулировка отношения победитель должна быть более хитрой. Та же проблема возникает и при формулировке правил для отношения спортсмен. Эту проблему можно обойти, объединив определения отношений победитель и боец и использовав связку "иначе". Вот такая формулировка:

 Если X победил кого-либо и X был кем-то побежден,

 то X — боец,

 иначе, если X победил кого-либо,

  то X — победитель, 

  иначе, если X был кем-то побежден,

   то X — спортсмен.

Такую формулировку можно сразу перевести на Пролог. Взаимные исключения трех альтернативных категорий выражаются при помощи отсечений:

класс( X, боец) :-

 победил( X, _ ),

 победил( _, X),  !.


класс( X, победитель) :-

 победил( X, _ ),  !.


класс( X, спортсмен) :-

 победил( _, X).

Заметьте, что использование отсечения в предложении для категории победитель не обязательно, что связано с особенностями наших трех классов.

Упражнения

5.1. Пусть есть программа:

p( 1).

p( 2) :- !.

p( 3).

Напишите все ответы пролог-системы на следующие вопросы:

(a) ?- p( X).

(b) ?- p( X), p(Y).

(c) ?- p( X), !, p(Y).

5.2. Следующие отношения распределяют числа на три класса - положительные, нуль и отрицательные:

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*