Охота на электроовец. Большая книга искусственного интеллекта - Марков Сергей Николаевич
Термин «биомиметика» впервые появляется в словаре Мерриам — Уэбстера в 1974 г., где определяется как «изучение строения, функций и способов формирования структур и веществ биологического происхождения (таких как ферменты или шёлк), а также биологических процессов и механизмов (например, синтеза белков или фотосинтеза) — главным образом для создания схожих продуктов искусственными методами, подобными природным» [918].
Многократное «переизобретение» бионики, по всей видимости, было связано с тем, что это направление является для развития технологий весьма древней и органической частью — при отсутствии собственного эффективного решения технология часто пытается оттолкнуться от существующего в природе «рабочего прототипа». По мере роста могущества науки и техники мы замахиваемся на копирование принципов работы всё более и более сложных биологических объектов. Озаботившись идеей создания летательного аппарата, великий Леонардо да Винчи посвятил много времени изучению полёта птиц, о чём нам известно из его записей и чертежей, но, к сожалению, задача оказалась непосильной для технологий XV–XVI вв. Однако спустя четыре столетия французский изобретатель Клеман Адер, основываясь на данных Луи Пьера Мойяра о полёте птиц, а также на собственных исследованиях принципов полёта различных живых существ — от насекомых до летучих мышей, построил летательный аппарат «Эол» (Éole), ставший, по всей видимости, первым в истории самолётом, осуществившим взлёт за счёт тяги собственной силовой установки. Девятого октября 1890 г. оснащённый паровым двигателем «Эол», похожий на гигантскую летучую мышь, смог оторваться от земли и пролетел около 50 метров [919], [920], [921].
К плодам бионики XX в. относят обычно и застёжку-липучку, принцип действия которой позаимствован у репейника [922], и поверхности, копирующие структуру акульей кожи, позволяющие улучшить аэро- и гидродинамические характеристики изделий [923] и даже препятствующие размножению бактерий [924]. Изучение крыльев бабочек помогло в разработке технологии RFID-чипов [925], изучение лап гекконов [926] и клея устриц [927] — в создании медицинских адгезивов [928]. Гидрофобные структуры [929], наносенсоры [930], холестерические жидкие кристаллы [931] — перечислять заимствованные у природы идеи можно долго.
Конечно, наши самолёты не машут крыльями, и развитие технологий зачастую приводит к тому, что в промышленных образцах мы уже с трудом можем опознать их природные прототипы: особенности производственных процессов, а также эксплуатационные требования накладывают свои ограничения на выпускаемые продукты.
Часто бионика влияет на развитие техники не напрямую. Например, наличие в природе «рабочего прототипа» может быть свидетельством принципиальной возможности создания того или иного устройства: если птицы могут летать, значит, возможно создание летательного аппарата тяжелее воздуха; если растения способны синтезировать сахара и крахмал из углекислого газа и воды, значит, можно создать устройство, выполняющее ту же функцию.
Решения, существующие в природе, являются продуктом сложного оптимизационного процесса, известного под названием «эволюция». С одной стороны, масштабы и значительная продолжительность эволюции приводят к появлению биологических систем, хорошо приспособленных к тем условиям, в которых они действуют. С другой же — решения, найденные эволюцией, могут являться оптимальными лишь локально, то есть может возникнуть ситуация, когда дальнейшее «улучшение» системы возможно только за счёт временного её «ухудшения», что затруднено давлением естественного отбора. И наконец, эволюция оптимизирует устройство живых организмов в направлении их приспособленности к среде обитания, а вовсе не к задачам, которые человек пытается решать при помощи создаваемой техники. С точки зрения эволюции человеческий мозг должен потреблять мало энергии, должен быть устойчивым к физическим воздействиям (вряд ли вам понравится, если от падения яблока на голову вы будете полностью терять память), голова младенца должна беспрепятственно преодолевать родовые пути при рождении и так далее. Все эти ограничения будут только мешать, если мы стремимся создать устройство, единственная цель которого — достижение максимальной эффективности при решении интеллектуальных задач. Словом, у нас есть основания полагать, что мозг далёк от идеала думающей машины. В конце концов, его роль в организме заметно шире: мозг — это не только думающая, но и управляющая «машина», с важной задачей поддержания автоматических процессов в организме. Головной мозг вообще не является чем-то радикально обособленным от человеческого тела — например, около 500 млн связанных с ним нейронов входят в состав так называемой энтеральной нервной системы, состоящей из нервных сплетений в оболочках полых органов желудочно-кишечного тракта [932], а ещё около 200 млн нейронов находится в спинном мозге [933]. Впрочем, задачи, которые мозгу приходится решать в связи с его управляющей функцией, можно, по всей видимости, отнести к разряду интеллектуальных, хотя их решение часто происходит без сознательного контроля.
Так или иначе, на сегодняшний день человеческий мозг — это лучшая известная нам «машина» для решения неопределённо широкого спектра интеллектуальных задач. Поэтому ещё с первой половины XX в. взоры учёных были обращены именно на этот «рабочий прототип», который позволяет нам оценить, какие именно задачи и какими средствами могут быть решены в принципе.
Вплоть до второй половины XIX в. наука немного знала о строении мозга. Учёные ограничивались самыми общими соображениями о природе мышления, выдвигая различные гипотезы о лежащих в его основе закономерностях и процессах. При этом внимание было сфокусировано в большей мере на принципах, составляющих основу умозаключений, а вопрос о физическом субстрате человеческого разума обходился стороной — в этой области царствовали либо наивные механистические гипотезы, либо откровенно магические по своей природе соображения о «тонкой материи», непознаваемой душе и так далее.
Логика Аристотеля, Мо-цзы, Акшапады Гаутамы, Нагарджуны и других интеллектуалов древности весьма преуспела в вопросах изучения структуры суждений, однако не все древние мыслители считали, что мышление является продуктом деятельности мозга. Тот же Аристотель приписывал эту роль сердцу. Появление в античной философии идеи о том, что именно мозг есть пристанище человеческого разума, традиционно приписывают Алкмеону Кротонскому, труды которого посвящены преимущественно медицинской тематике [934]. То, что было не до конца ясным для логиков, было вполне понятно врачам. По крайней мере, точку зрения Алкмеона вполне разделяли и «отец медицины» Гиппократ, и «отец анатомии» Герофил, и даже их коллега и по совместительству внук Аристотеля Эрасистрат [935]. Люди, чья работа заключалась в «ремонте» сложной машины под названием «человеческий организм», неизбежно лучше разбирались в особенностях его работы, чем философы. Аналогия между человеческим организмом и машиной стала особенно популярна в Новое время благодаря успехам в области механики. «Левиафан» Гоббса предваряет яркая метафора автора: «…наблюдая, что жизнь есть лишь движение членов, начало которого находится в какой-нибудь основной внутренней части, разве не можем мы сказать, что все автоматы (механизмы, движущиеся при помощи пружин и колёс, как, например, часы) имеют искусственную жизнь? В самом деле, что такое сердце, как не пружина? Что такое нервы, как не такие же нити, а суставы — как не такие же колёса, сообщающие движение всему телу так, как этого хотел мастер?» Столь же механически Гоббс определяет рассуждение [reason] как одну из способностей человеческого ума: «рассуждение <…> есть не что иное, как подсчитывание (т. е. складывание и вычитание) связей общих имён с целью отметить и обозначить наши мысли» [936]. Неслучайно в истории философии направление, к которому принято относить Гоббса, получило название «механической философии» или «механицизма». Позже Лейбниц в отзыве на работу Гоббса выражает её квинтэссенцию самым радикальным образом: «Томас Гоббс, повсеместно глубоко исследующий основы, справедливо заметил, что всё, что делает наш ум, — это вычисление». Философское наследие Лейбница включает в себя обширные исследования в области теории мышления, благодаря чему этого немецкого мыслителя нередко называют «дедушкой искусственного интеллекта» [937].