KnigaRead.com/
KnigaRead.com » Книги о бизнесе » Ценные бумаги и инвестиции » Питер Бернстайн - Против богов: Укрощение риска

Питер Бернстайн - Против богов: Укрощение риска

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Питер Бернстайн, "Против богов: Укрощение риска" бесплатно, без регистрации.
Перейти на страницу:

Моргенштерн родился в Германии в 1902 году, но вырос и получил образование в Вене. К 1931 году он был уже достаточно признан как экономист, чтобы стать преемником Фридриха фон Хайека (fon Hayek) на посту директора престижного Венского института исследований делового цикла. Хотя он был христианином с примесью антисемитизма, в 1938 году, после вторжения Германии в Австрию, он уехал в Соединенные Штаты и скоро нашел место на экономическом факультете в Принстоне[5].

Моргенштерн не верил в возможность использования экономической науки для предсказания деловой активности. Он доказывал, что потребители, бизнесмены и политики учитывают прогнозы и в соответствии с ними меняют свои решения и действия. Эти изменения заставляют прогнозистов изменять прогнозы, побуждая публику к новым реакциям. Моргенштерн сравнивал эту постоянную обратную связь с игрой Шерлока Холмса и профессора Мориарти, старающихся перехитрить друг друга. Отсюда следовал вывод, что в экономике статистические методы пригодны только в описательных целях, «но твердолобые, кажется, не отдают себе в этом отчета»[6].

Моргенштерна раздражала идея о возможности идеального прогноза, господствовавшая в экономической теории XIX века. Никто, утверждал Моргенштерн, не может знать, что собираются делать все остальные в любой данный момент: «Неограниченный прогноз и экономическое равновесие взаимно несовместимы»[7]. Фрэнк Найт высоко оценил этот вывод и предложил перевести статью Моргенштерна с немецкого на английский.

Кажется, Моргенштерн был лишен шарма. Нобелевский лауреат Пол Самуэльсон (Samuelson), автор самого популярного в течение нескольких десятилетий учебника по экономике, так писал о нем: «Наполеоновский комплекс... постоянно ссылается на авторитет каких-то физиков или других ученых»{1}[8]. Другой современник утверждал, что принстонские экономисты «просто терпеть не могли Оскара»[9]. Да и сам Моргенштерн жаловался на недостаток внимания к своему любимому детищу. После посещения Гарварда в 1945 году он заметил, что «никто из них» не проявил никакого интереса к теории игр[10]. В 1947 году его огорчил экономист Репке, назвавший теорию игр «досужей венской болтовней»{2}, а в 1950 году при посещении группы выдающихся экономистов в Роттердаме он обнаружил, что они «знать ничего не хотели о [теории игр], потому что она их раздражает».

Моргенштерн в свою очередь презирал лишенную строгости трактовку Кейнсом проблемы определенности и отзывался о его «Общей теории» как о «просто чудовищной работе», но, даже будучи энтузиастом использования математических методов в экономическом анализе, постоянно жаловался на свои проблемы с новыми материалами, которые подсовывал ему фон Нейман[11]. К фон Нейману Моргенштерн относился с благоговением. «Он загадочный человек, — написал он как-то. — Столкнувшись с чем-то научным, он весь загорается, проясняется, оживает, потом гаснет, погружается в спячку, ведет поверхностные сумбурные разговоры... В нем есть что-то непостижимое».

***

Перспектива увязать холодный математический расчет теории игр с коллизиями экономики показалась заманчивой и математику, интересующемуся экономикой, и экономисту, увлеченному математикой. Дополнительным стимулом к их сотрудничеству послужило разделяемое обоими ощущение того, что, говоря словами Моргенштерна, использование математики в экономике пребывало тогда «в плачевном состоянии»[12].

Действовали здесь и высшие мотивы: стремление сделать математику столь же мощным инструментом анализа общества, каким она проявила себя в естественных науках. Но если в наши дни такое стремление приветствовалось бы большинством представителей общественных наук, в конце 1940-х годов оно, вероятнее всего, и было главной причиной отторжения самой идеи применения теории игр. В то время академическим курятником правил Кейнс, а он считал невозможным математическое описание человеческого поведения.

«Теория игр и экономическое поведение» не теряла времени на апологию применения математических методов в ходе принятия экономических решений. Фон Нейман и Моргенштерн отвергли как «совершенно ошибочный» аргумент, будто человеческие и психологические аспекты экономики препятствуют использованию математического анализа. Указывая на то, что математику начали использовать в физике только в XVI веке, а в химии и биологии — в XVIII, они утверждали, что перспективы математизации этих наук «в эти ранние периоды вряд ли могли быть лучшими, чем в экономике — mutatis mutandis{*1} — сегодня»[13].

Фон Нейман и Моргенштерн отвергали возражения, основанные на том, что их строгие математические операции и упор на кван-тификацию являются нереалистическими упрощениями, потому что «рядовой человек... осуществляет экономическую активность в сфере господства неопределенности»[14]. Ведь в конце концов свет и тепло люди тоже воспринимают нечетко:

«Чтобы превратить физику в науку, эти явления (тепло и свет) нужно было измерить. А в результате люди начали использовать — прямо или косвенно — результаты таких измерений даже в повседневной жизни. То же самое может случиться в будущем и в экономике. Когда с помощью теории, использующей [измерения], удастся достичь более полного понимания человеческого поведения, человеческая жизнь может существенно измениться. А это означает, что изучение этих проблем не обязательно представляет собой упадок науки»[16]

***

В «Теории игр и экономическом поведении» анализ начинается с простого примера: человек выбирает между двумя альтернативами, как при выборе между орлом и решкой в игре в «чет и нечет». Но на этот раз фон Нейман и Моргенштерн проникают значительно глубже в природу принятия решений, заставляя человека делать выбор не между двумя простыми возможностями, а между двумя комбинациями событий.

Они рассматривают пример с человеком, который предпочитает кофе чаю, а чай молоку[16]. Ему задают вопрос: «Что ты предпочтешь — чашку кофе или стакан, в котором с шансами 50 на 50 будет чай или молоко?» Естественно, он выберет чашку кофе.

А если сменить его предпочтения и задать тот же вопрос? Пусть на этот раз он предпочитает молоко и чаю, и кофе, но все-таки лучше кофе, чем чай. Теперь выбор между гарантированным кофе и возможностью с равной вероятностью получить чай или молоко становится менее очевидным, чем в первом случае, потому что неопределенный исход сулит ему выполнение главного желания (молоко) или же то, что ему нужно меньше всего (чай). Изменяя вероятности нахождения в стакане чая или молока и спрашивая, в какой момент для человека гарантия получения кофе и игра на получение молока с риском получить вместо него нежеланный чай станут одинаково предпочтительны, мы можем получить количественную оценку — фиксированное число — для измерения степени предпочтительности молока, кофе и чая.

Пример становится более наглядным, если перейти к технике измерения выгоды — степени удовлетворенности — от обладания одним долларом по сравнению с выгодой от получения второго доллара, то есть обладания двумя долларами. Теперь для человека лучшим исходом должно быть обладание двумя долларами, которое мы поставим на место получения молока в предыдущем примере; отсутствие денег займет теперь место чая, как наименее благоприятного исхода, и один доллар займет место среднего по предпочтительности варианта — получения кофе.

Сделаем опыт более реалистичным и будем измерять полезность, т.е. степень удовлетворения. Пусть наш человек выбирает между гарантированным одним долларом и возможностью получить либо еще один, либо остаться без ничего.

С вероятностью 50% человек получает два доллара и с вероятностью 50 — ноль, то есть математическое ожидание в игре равно одному доллару. Если человек скажет, что ему безразлично, играть ли, чтобы с равными шансами получить два доллара или ничего, или получить без игры один доллар, можно считать, что он нейтрален к риску при столь малых ставках. В соответствии с формулой, предложенной фон Нейманом и Моргенштерном, вероятность самой желанной возможности — в этом случае получить два доллара — определяет, насколько человек предпочитает один доллар вместо нуля по сравнению с тем, насколько он предпочитает два доллара вместо нуля. Здесь 50% означают, что его предпочтение получить один доллар вместо нуля составляет половину от его предпочтения получить два доллара вместо нуля. В такой ситуации полезность двух долларов вдвое больше полезности одного доллара.

Ответы других людей или при других обстоятельствах могут сильно отличаться. Посмотрим, что произойдет, если мы увеличим ставки и изменим вероятности в игре. Предположим теперь, что этот человек безразличен к альтернативе гарантированно получить 100 долларов или игре с 67% вероятности получить 200 долларов и с 33% вероятности не получить ничего. Математическое ожидание в этой игре составляет 133 доллара; иными словами, предпочтительность гарантированного исхода — получения 100 долларов — теперь больше, чем когда речь шла только о паре долларов. 67% вероятности получения 200 долларов означают, что его предпочтение получить 100 долларов вместо нуля составляет две трети от предпочтения получить 200 долларов вместо нуля: полезность от первых 100 долларов выше, чем полезность от последующих 100 долларов. Полезность большей суммы уменьшается, когда сумма денег, подвергающаяся риску, увеличивается с однозначного числа до трехзначного.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*