KnigaRead.com/
KnigaRead.com » Книги о бизнесе » Ценные бумаги и инвестиции » Питер Бернстайн - Против богов: Укрощение риска

Питер Бернстайн - Против богов: Укрощение риска

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Питер Бернстайн, "Против богов: Укрощение риска" бесплатно, без регистрации.
Перейти на страницу:

Но Якоб идет дальше Лейбница в обсуждении того, что означает понятие «достоверность». Наше индивидуальное суждение о достоверности — вот что привлекает внимание Якоба: условие практической достоверности имеет место, если мы почти абсолютно убеждены в верности суждения. Когда Лейбниц вводил это понятие, он определил его как «бесконечную вероятность». Сам Якоб удовлетворяется вероятностью 1000/1001, но он хочет подстраховаться: «Было бы полезным, если бы должностные лица установили пределы практической достоверности»[8].

***

Якоб торжествует. Отныне, утверждает он, мы можем делать предсказания о любых неопределенных величинах с той же степенью научной обоснованности, как и предсказания в случайных играх. Он перевел вероятность из сферы теории в мир реальности:

«Если вместо кувшина мы обратимся, например, к атмосфере или человеческому телу, в котором таится множество самых разных процессов или болезней, как камешков в кувшине, то на основе наблюдений мы сможем определить, насколько наступление одного события более вероятно, чем наступление другого»[9]

Однако, как оказалось, с кувшином у Якоба не обошлось без хлопот. Расчет, показавший необходимость 25 550 испытаний для получения практической достоверности, должен был ужаснуть его неприемлемой величиной этого числа; в те времена население его родного города Базеля было меньше 25 550 человек. Судя по тому, что именно на этом месте его книга обрывается, можно предположить, что он растерялся и не знал, как быть дальше. Приходилось делать вывод, что трудно найти в реальной жизни случаи, в которых все наблюдения удовлетворяли бы требованию независимости друг от друга:

«Таким образом, если все события вечно повторяются, приходится признать, что всё в мире происходит по определенным причинам в соответствии с определенными правилами, и мы вынуждены предположить относительно наиболее явно случайных вещей наличие некоей необходимости, или, иначе говоря, РОКА»[10]

Тем не менее его кувшин с камешками заслужил бессмертие. Эти камешки стали инструментом в первой попытке измерить неопределенность — точнее, определить ее — и вычислить вероятность того, что эмпирически определенное значение случайной величины близко к истинному, даже если истинное значение неизвестно.

***

Якоб Бернулли умер в 1705 году. Его племянник Николай — Николай Медлительный — продолжил исследования дяди, связанные с определением вероятностей на основе наблюдений, одновременно медленно, но верно завершая подготовку к изданию «Ars Conjectandi». Его результаты были опубликованы в том же 1713 году, в котором наконец вышла в свет книга Якоба.

Якоб для начала задает вероятность того, что отклонение наблюдаемого значения от истинного окажется в некоем определенном интервале, а затем вычисляет число наблюдений, необходимое для получения именно этого заданного значения. Николай поставил перед собой обратную задачу. Считая число наблюдений заданным, он вычислял вероятность того, что отклонение наблюдаемого среднего от истинного окажется в заданных пределах. Он использовал пример, в котором предполагал, что отношение числа рождающихся мальчиков к числу рождающихся девочек равно 18:17. Если общее число рождений составляет, скажем, 14000, ожидаемое число рождений мальчиков должно быть 7200. Затем он рассчитал, что с шансами по меньшей мере 43,58 к 1 действительное число родившихся мальчиков окажется в интервале 7200 + 163 и 7200 - 163, то есть между 7363 и 7037.

В 1718 году Николай предложил французскому математику Абрахаму де Муавру присоединиться к его исследованиям, но де Муавр отверг это предложение: «Я хотел бы оказаться способным... применить теорию случайностей (Doctrine of Chances) к решению экономических и политических задач, [но] с готовностью передаю мою часть работы в лучшие руки».[11] Из этого ответа де Муавра Николаю следует, что исследования по использованию вероятности и прогнозированию быстро продвигались вперед.

Де Муавр родился в 1667 году — через 13 лет после Якоба Бернулли — в протестантской семье во Франции, в обстановке возрастающей враждебности ко всем некатоликам.[12] В 1685 году, когда ему было 18 лет, король Людовик XIV отменил Нантский эдикт, провозглашенный в 1598 году родившимся в протестантской вере королем Генрихом IV и предоставивший протестантам, называемым гугенотами, равные политические права с католиками. После отмены эдикта исповедование реформатской религии было запрещено, дети гугенотов должны были воспитываться в католической вере, эмиграцию запретили. Де Муавр свыше двух лет провел в тюрьме за свои религиозные убеждения. Ненавидя Францию и все с нею связанное, он в 1688 году бежал в Лондон, где Славная революция как раз покончила с остатками государственного католицизма. На родину он так и не вернулся.

В Англии де Муавр вел печальную и неустроенную жизнь. Несмотря на все усилия, ему не удалось добиться приличной академической должности. Он зарабатывал на жизнь уроками математики и консультациями по применению теории вероятностей для игроков и страховых брокеров. С этой целью он держал неофициальную приемную в кофейне Слайтера, что на улице Святого Мартина, где большей частью и проводил остаток дня по окончании занятий с учениками. Хотя он был другом Ньютона и стал членом Королевского общества уже в тридцать лет, он так и остался едким, ушедшим в себя, асоциальным человеком. Умер он в 1754 году в бедности и слепоте в возрасте 87-ми лет.

В 1725 году де Муавр опубликовал работу, озаглавленную «Пожизненная рента» («Annuities upon Lives»), с анализом таблиц Галлея о продолжительности жизни и смертности в Бреслау. Хотя книга посвящена главным образом научным проблемам, в ней обсуждаются многие вопросы, относящиеся к головоломкам, которые пытались решить Бернулли и которые позднее де Муавр детально исследовал.

Историк статистики Стивен Стиглер (Stigler) приводит интересный пример, рассмотренный в работе де Муавра о ренте. Таблицы Галлея свидетельствовали, что в Бреслау из 346 человек пятидесятилетнего возраста только 142, то есть 41%, дожили до семидесяти лет. Это очень маленькая выборка. В какой мере можно использовать этот результат для выводов об ожидаемой продолжительности жизни пятидесятилетних? Де Муавр не мог использовать эти числа для определения вероятности того, что человек в возрасте пятидесяти лет имеет меньше 50% шансов дожить до семидесяти, но он мог бы ответить вот на какой вопрос: «Если в действительности шансы равны, какова вероятность того, что выборка покажет величину не более 142/346?»

Первая прямо посвященная теории вероятностей работа де Муавра озаглавлена «De Mensura Sortis» (буквально «Об измерении случайных величин»). Работа была впервые опубликована в 1711 году в журнале Королевского общества «Philosophical Transactions». В 1718 году де Муавр предпринял значительно расширенное издание этой работы на английском языке, озаглавленное «Теория случайностей» («The Doctrine of Chances»), с посвящением своему близкому другу Исааку Ньютону. Книга имела огромный успех и выдержала еще два издания в 1738-м и 1756 годах. Работа, видимо, произвела сильное впечатление на Ньютона, который при случае говорил своим студентам: «Обратитесь к мистеру де Муавру, он знает эти вещи лучше меня». «De Mensura Sortis», по-видимому, первая работа, в которой риск определен как шанс проигрыша: «Риск проиграть некую сумму обратен ожиданию выигрыша, и истинной мерой его является произведение поставленной на кон суммы на вероятность проигрыша».

В 1730 году де Муавр в конце концов обратился к предложенной Николаем Бернулли теме — насколько хорошо реальная выборка отображает свойства совокупности, на основе которой она построена. В 1733 году он опубликовал полное решение задачи и включил его во второе и третье издания «Теории случайностей». Он начинает с признания, что Якоб и Николай Бернулли «показали очень большое искусство... Однако некоторые вещи нуждаются в дальнейшей разработке». В частности, подход обоих Бернулли «представляется настолько трудоемким и связан с такими сложностями, что до сих пор мало кто соглашался их преодолевать».

Действительно, необходимость проведения 25 550 испытаний делала решение задачи практически неосуществимым. Даже если бы, как утверждал Джеймс Ньюмен, Якоб Бернулли в приведенном им примере был бы готов удовлетвориться «практической достоверностью», не большей, чем в пари с равными шансами, — вероятностью 50/100 того, что результат будет с точностью до 2% равен 3/2, — и то понадобилось бы 8 400 испытаний. По нынешним стандартам требование Якобом вероятности 1000/1001 курьезно само по себе. Сегодня большинство статистиков принимают несовпадение не более чем в 1 из 20 случаев как основание признания значимости (так сегодня называют практическую достоверность) результата с более чем достаточной степенью вероятности.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*