KnigaRead.com/
KnigaRead.com » Книги о бизнесе » Ценные бумаги и инвестиции » Питер Бернстайн - Против богов: Укрощение риска

Питер Бернстайн - Против богов: Укрощение риска

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Питер Бернстайн, "Против богов: Укрощение риска" бесплатно, без регистрации.
Перейти на страницу:

Это современный вариант рассматриваемого в «Логике» Пор-Рояля примера с боязнью грозы, хотя и отличается от него мотивацией личностной установки в условиях риска. Здесь профессор превосходно понимал, насколько мала математическая вероятность попасть под бомбу. Его поведение наглядно иллюстрирует двойственный характер всего, что связано с вероятностью: частота события в прошлом вступает в конфликт с эмоциональной оценкой действительности и влияет на выбор поведения в условиях риска.

Смысл истории этим не исчерпывается. Она перекликается с подходом Гранта, Петти и Галлея: если точное знание будущего и даже прошлого недостижимо, какова достоверность имеющейся у нас информации? Что важнее для принятия решения: семь миллионов москвичей или погибший слон? Как мы должны оценивать добавочную информацию и как включать ее в оценки, базирующиеся на исходной информации? Является ли теория вероятностей математической забавой или серьезным инструментом прогнозирования?

Теория вероятностей является серьезным инструментом прогнозирования, но при пользовании им нельзя забывать о том, что, как говорится, дьявол в мелочах, что все зависит от качества информации, на основе которой вероятность оценивается. Эта глава посвящена осуществленной в течение XVIII столетия последовательности гигантских шагов, революционизировавших использование информации и определивших методологию применения теории вероятностей в задачах выбора и принятия решений в современном мире.

***

Впервые изучением связей между вероятностью события и качеством исходной информации занялся второй из старших Бернулли — Якоб (1654-1705), дядя известного Даниила Бернулли.[1] Он был еще ребенком, когда Паскаль и Ферма высказали свои замечательные математические идеи, и умер, когда его племяннику Даниилу едва исполнилось пять лет. Талантливый, как все Бернулли, он был современником Исаака Ньютона и, обладая свойственным всем Бернулли сложным и самолюбивым характером, считал себя соперником великого английского ученого.

Сама по себе постановка Якобом обсуждаемого вопроса, даже если отвлечься от предложенных им ответов, была научным подвигом. По его признанию, он размышлял над этой проблемой двадцать лет и окончил посвященный ей труд незадолго до смерти, последовавшей в 1705 году.

Якоб был самым мрачным из Бернулли, особенно к концу жизни, несмотря на то что он жил в веселые и легкомысленные времена, наступившие в Англии после реставрации монархии в 1660 году и восшествия на престол Карла II{1}, когда, например, один из его весьма известных современников Джон Арбутнот, лекарь королевы Анны, член Королевского общества и математик-дилетант, занимавшийся проблемами вероятности, считал уместным для иллюстрации содержащихся в своих опусах положений сдабривать их фривольными примерами, обсуждая вероятность того, что «женщина в двадцатилетнем возрасте сохранила девственность» или что «лондонский щеголь того же возраста не болен триппером».[2]

В 1703 году Якоб Бернулли впервые поставил вопрос о зависимости получаемого значения вероятности от выборки. В письме к своему другу Лейбницу он заметил, что ему кажется странным, что нам известна вероятность выпадения семи, а не восьми очков при игре в кости, но мы не знаем, с какой вероятностью двадцатилетний переживет шестидесятилетнего. Не следует ли нам, спрашивает он, для ответа на этот вопрос подвергнуть исследованию множество пар людей всех возрастов?

Отвечая Бернулли, Лейбниц пессимистически оценил этот подход. «Природа установила шаблоны, имеющие причиной повторяемость событий, — пишет он, — но только в большинстве случаев. Новые болезни захлестнули человечество, так что не имеет значения, сколько опытов вы провели над трупами, — на их основе вам не установить таких границ природы событий, чтобы в будущем не осталось места вариациям»[3]. Хотя письмо Лейбница написано на латыни, выражение «но только в большинстве случаев» он написал по-гречески: ως επι το πολυ. Очевидно, этим он хотел подчеркнуть, что конечное число опытов, предлагаемое Якобом, с неизбежностью окажется недостаточным для точного исчисления замыслов природы {2}.

Реакция Лейбница не обескуражила Якоба, но внесла коррективы в его подход к решению проблемы. Лейбницево предупреждение по-гречески не прошло даром.

Усилия Якоба определить вероятность на основе обследования выборки данных нашли отражение в его «Ars Conjectandi», работе, которую его племянник Николай полностью опубликовал через восемь лет после смерти автора в 1713 году[4]. Интерес Якоба сосредоточен на том, чтобы показать, где метод логического вывода — объективный анализ данных — кончается и начинается другой метод — прогнозирование на основе вероятностных законов. В известном смысле здесь прогнозирование рассматривается как процесс восстановления целого по части.

Якоб начинает свой анализ с констатации того, что в теории вероятностей для принятия гипотезы о возможности события «необходимо только подсчитать точное число возможных событий и затем определить, насколько наступление одного события более вероятно, нежели наступление другого». Трудность, на которую он постоянно указывает, заключается в том, что использование вероятности ограничено почти исключительно случайными играми. С этой точки зрения достижения Паскаля представляются не более как интеллектуальной забавой.

Для Якоба это ограничение имеет принципиальное значение, о чем свидетельствует его рассуждение, созвучное Лейбницеву предупреждению:

«Но кто из смертных... может установить число болезней, подсчитав все, причиняющие страдания человеческому телу... и насколько фатальный исход от одной болезни более вероятен, чем от другой — от чумы или от водянки... от водянки или от лихорадки, — и на этой основе сделать предсказания о соотношении жизни и смерти для будущих поколений?

...Кто может претендовать на столь глубокое проникновение в природу человеческого духа и изумительную структуру тела, чтобы в играх, результат которых зависит от... остроты ума или физической ловкости игроков, рискнуть предсказать, кто из игроков выиграет и кто проиграет?»

Якоб указывает на принципиальное отличие между реальностью и абстракцией при использовании вероятностных законов. Например, предложенное Пацциоли рассмотрение незавершенной игры в balla, как и пример с гипотетическим неоконченным турниром на первенство по бейсболу, о котором у нас шла речь при обсуждении треугольника Паскаля, не имеет ничего общего с реальными жизненными ситуациями. В реальной жизни игроки в balla, как и участники бейсбольного турнира, обладают различной «остротой ума и физической ловкостью» — качествами, которые я игнорировал в приведенных ранее упрощенных примерах использования законов вероятности для предсказания событий. Треугольник Паскаля дает только намек на исход игры в реальных условиях.

Теория может определить вероятность тех или иных исходов для игры в казино или лотереи — здесь нет необходимости вращать колесо рулетки или считать лотерейные билеты, чтобы определить характер результата, но в реальной жизни важна относящаяся к делу информация. Беда в том, что мы никогда не обладаем ей в нужном объеме. Природа устанавливает шаблоны, но «только в большинстве случаев». В теории, которая абстрагируется от природы, дело обстоит проще: мы или имеем необходимую информацию, или не нуждаемся в ней. Как сказал цитированный в введении Фишер Блэк, мир выглядит более упорядоченным с территории Массачусетского технологического института, чем в перспективе хаотического бурления Уолл-стрит.

В нашем обсуждении гипотетической игры в balla и воображаемого бейсбольного турнира статистика игр, физические способности и интеллектуальное развитие игроков не имели отношения к делу. Игнорировалась даже сама природа игры. Теоретический подход полностью подменял конкретную информацию.

В реальности фанатики бейсбола, как и брокеры фондовой биржи, собирают массу статистических данных, потому что эта информация необходима им для оценки класса игроков и команд или для оценки будущей прибыльности акций. И даже заключения экспертов с вероятностными оценками конечных результатов, полученные на основе обработки тысяч фактов, и в спорте и в финансах оставляют место сомнениям и неопределенности.

Треугольник Паскаля и все предшествующие работы по теории вероятностей отвечали только на один вопрос: какова вероятность того или иного отдельного события. Ответ на этот вопрос в большинстве случаев имеет ограниченную ценность, поскольку чаще всего он мало что дает для оценки ситуации. Что на деле даст нам знание того, что игрок А имеет 60% шансов победить в отдельной партии в balla? Можно ли на этом основании утверждать, что он способен победить игрока В в 60% партий? Ведь победы в одном турнире недостаточно для этого утверждения. Сколько раз должны сыграть А и В, чтобы мы могли убедиться, что А играет лучше, чем В? Что говорит нам результат бейсбольного турнира этого года о вероятности того, что победившая команда является самой сильной вообще, а не только в этом году? Что говорит высокий процент смертности от рака легких среди курильщиков о вероятности того, что курение раньше срока сведет в могилу именно вас? Свидетельствует ли смерть слона о целесообразности спускаться в бомбоубежище при налетах?

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*