Питер Бернстайн - Против богов: Укрощение риска
У монеты две стороны, орел и решка, каждая может выпасть с вероятностью 50%, поскольку не могут обе стороны одновременно смотреть вверх. Каков ожидаемый результат бросания монеты? Мы умножаем 50% на один для орла, делаем то же самое для решки, берем сумму — 100% — и делим на два. Ожидаемое значение при бросании монеты равно 50%. Орел и решка выпадают с одинаковой вероятностью.
Каково ожидаемое значение при бросании двух костей? Если мы сложим 11 возможных чисел — 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12, то в сумме получим 77. Ожидаемое значение от бросания двух костей равно 77/11, или ровно 7.
Однако эти 11 чисел выпадают не с одинаковой вероятностью. Как показал Кардано, некоторые числа должны появляться чаще других, потому что при бросании двух костей возможны 36 разных комбинаций двух чисел, которые в сумме дают 11 возможных значений от 2 до 12; например, два получается только при варианте дубль-один, а четыре — в результате трех исходов, а именно: 3 + 1, 1 + З и 2 + 2. Полезная таблица Кардано (с. 70) показывает число комбинаций, дающих каждый из 11 исходов:
Ожидаемое значение, или математическое ожидание, при бросании двух костей равно 7, что соответствует результату нашего предыдущего подсчета 77/11. Теперь ясно, почему семерка играет такую важную роль в игре в крепс.
Бернулли согласен, что такие расчеты хороши для случайных игр, но настаивает на том, что в повседневной жизни дело обстоит иначе. Даже если вероятности известны (упрощение, впоследствии отвергнутое математиками), разумный человек, принимая решение, постарается максимизировать скорее ожидаемую полезность (или степень удовлетворения), чем ожидаемое значение. Ожидаемая полезность вычисляется с использованием тех же методов, что и ожидаемое значение, но оценивается с учетом весомости фактора полезности.[11]
Например, Антуан Арно, почтенный автор «Логики» Пор-Рояля, обвинял людей, боящихся раскатов грома, в переоценке того, насколько мала вероятность попадания в них молнии. Он был не прав. Не они, а он кое-что игнорирует. Факты одни и те же для всех, и даже тот, кто приходит в ужас от первого раската грома, прекрасно осознаёт, насколько мала вероятность попадания молнии именно в то место, где он находится. Ситуацию прояснил Бернулли: люди, боящиеся попадания в них молнии, придают такой вес последствиям этого исхода, что, сколь бы мала ни была его вероятность, само ее наличие способно ужаснуть.
Оценка исхода превалирует над измерением. Порасспросите-ка пассажиров самолета, попавшего несколько раз подряд в воздушные ямы, одинакова ли у них степень беспокойства. Большинство людей прекрасно знают, что в наше время полет на самолете безопаснее езды на автомобиле, но некоторые пассажиры доставят немало хлопот стюардессам, в то время как другие в это время спокойно вздремнут.
И это хорошо. Если бы все стали оценивать риск одинаково, многие благоприятные возможности были бы упущены. Азартные люди предпочитают большую и маловероятную выгоду более вероятной, но малой выгоде. Других мало привлекает вероятность выигрыша, потому что их заветной целью является сохранение того, что у них есть. Один видит солнце, другой ждет грозы. Без авантюристов Земля вращалась бы медленнее. Представьте себе, во что превратилась бы наша жизнь, если бы каждый боялся выходить во время грозы, летать на самолете или вкладывать деньги в новые предприятия. Нам повезло, что люди по-разному относятся к риску.
***Стоило Бернулли высказать свой основной тезис о том, что люди по-разному оценивают одни и те же значения риска, как он пришел к кардинальной идее: «Польза от небольшого увеличения богатства обратно пропорциональна величине уже имеющегося богатства». Далее он замечает: «Что касается человеческой природы, мне кажется, что предлагаемую гипотезу можно счесть пригодной для понимания поведения многих людей, в отношении которых это сравнение имеет смысл».
Гипотеза о том, что польза от прироста обратно пропорциональна величине уже имеющегося богатства, является одним из величайших интеллектуальных достижений в истории идей. Меньше чем на одной странице процесс вычисления вероятностей превращен в процедуру подключения субъективных соображений к процессу принятия решений в ситуациях с неопределенными исходами.
Бернулли блистательно сформулировал мысль о том, что в отличие от фактов, дающих однозначный ответ на вопрос об ожидаемом значении (факты для всех одни и те же), субъективный процесс оценки этого значения приводит к такому же количеству ответов, сколько людей в нем участвуют. Но и это еще не всё; дальше он предлагает методику подхода к определению того, насколько сильно и много или мало чего-то хочет каждый, принимающий решение: объем и степень пожеланий обратно пропорциональны количеству того, что уже есть.
Впервые в истории Бернулли применил измерение к чему-то, чего нельзя сосчитать. Он обвенчал интуицию с измерением. Кар-дано, Паскаль и Ферма создали метод вычисления риска при бросании костей, но Бернулли подвел нас к рискующему, к игроку, решающему, сколько поставить и ставить ли вообще. Если теория вероятностей рационализирует выбор, то Бернулли определяет мотивацию личности, которая выбирает. Фактически он указал на новый предмет изучения и заложил интеллектуальные основы того, что позднее нашло применение не только в экономической теории, но и в общей теории принятия решений в разных жизненных ситуациях.
***В своей статье Бернулли приводит ряд интересных примеров, иллюстрирующих его идеи. Самым интригующим и знаменитым из них стал так называемый петербургский парадокс, предложенный его «глубоко почитаемым кузеном, славным Николаем Бернулли» — медлительным издателем «Ars Conjectandi». Николай предложил игру между Петром и Павлом, в которой Петр бросает монету до тех пор, пока не выпадет орел. Петр должен заплатить Павлу один дукат, если орел выпадет в первом броске, два дуката, если орел выпадет во втором броске, четыре — в третьем броске, и так далее. С каждым следующим броском число дукатов, которые Петр должен заплатить Павлу, удваивается.{4} Сколько должен заплатить Павлу за право занять его место в этой игре тот, кто захочет загрести порядочную сумму?
Причину парадокса Бернулли усматривает в том, что «принятый метод вычисления [ожидаемого значения] на деле делает оценку перспектив Павла бесконечно большой, [но] никто не захочет купить [эти перспективы] за достаточно высокую цену... Каждый сколько-нибудь разумный человек с большим удовольствием продаст свой шанс за двадцать дукатов».{5}
Бернулли провел подробный математический анализ проблемы, основанный на предположении, что польза от приращения богатства обратно пропорциональна первоначальному богатству. В соответствии с этим предположением сумма, которую Павел может выиграть на двухсотом броске, принесет ему бесконечно малую добавочную пользу по сравнению с тем, что он должен был накопить к сто первому броску; даже к пятьдесят первому броску у него уже должно быть более 1 000 000 000 000 000 дукатов. (Для сравнения отметим, что национальный долг правительства США составляет ныне в долларах сумму, представляемую четверкой с двенадцатью нулями.)
В дукатах или в долларах, оценка ожиданий Павла долгое время привлекала внимание ведущих математиков, философов и экономистов. В истории математики англичанина Исаака Тодхантера, опубликованной в 1865 году, содержатся многочисленные ссылки на петербургский парадокс и обсуждаются некоторые решения, предложенные математиками за годы, прошедшие после опубликования статьи Бернулли.[12] Между тем многие годы статью Бернулли можно было прочесть только в оригинале на латыни, пока в 1896 году не появился первый немецкий перевод. Внимание математиков к петербургскому парадоксу резко возросло после того, как Джон Мейнард Кейнс сослался на него в своем «Курсе теории вероятности» («A Treatise of Probability»), опубликованном в 1921 году. Но только в 1954 году — через 216 лет после первой публикации — статья Бернулли появилась в английском переводе.
Петербургский парадокс — это нечто большее, чем академическое упражнение в описании и истолковании вероятностных аспектов бросания монеты. Представьте себе крупную растущую компанию со столь блестящими перспективами роста, что они представляются бесконечными. Даже при абсурдном предположении, что мы сможем точно предсказать прибыли компании в бесконечно далеком будущем — обычно мы радуемся, когда это удается на квартал вперед, — какой должна быть цена акций этой компании? Бесконечной? {6}
Бывают моменты, когда серьезные, трезвые, опытные инвесторы подпадают под власть подобных несбыточных надежд, — моменты, когда о вероятностных законах забывают. В конце 60-х и начале 70-х годов нынешнего столетия портфельные менеджеры крупнейших корпораций настолько соблазнились идеей общего роста курсов, и прежде всего роста так называемых акций Nifty-Fifty, что готовы были платить любые деньги за право владения акциями таких компаний, как Xerox, Coca-Cola, IBM и Polaroid. Эти менеджеры усматривали риск не в возможности переплатить за акции Nifty-Fifty, a в опасности их упустить: перспективы роста казались настолько бесспорными, что считалось, что уровень грядущих прибылей и дивидендов, Бог даст, всегда оправдает любую цену. Они считали риск переплаты мизерным по сравнению с риском при покупке акций таких компаний, как Union Carbide или General Motors, чьи перспективы казались неопределенными из-за цикличности котировок и жесткой конкуренции.