KnigaRead.com/
KnigaRead.com » Детская литература » Прочая детская литература » В Левшин - Искатели необычайных автографов

В Левшин - Искатели необычайных автографов

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн В Левшин, "Искатели необычайных автографов" бесплатно, без регистрации.
Перейти на страницу:

- Конечно, - поддержал его незнакомец. - В некоторых случаях такой способ куда короче и удобнее. Древние греки, например, щедро им пользовались. Обратился к коническим сечениям и Хайям, когда столкнулся с кубическими уравнениями.

-Ты так хорошо знаешь математику... Наверное, Хайям-ученый тебе все-таки ближе, чем Хайям-поэт, - с надеждой предположил Мате.

Но незнакомец сказал, что оба дороги ему совершенно одинаково. Тем более что и между собой они ладят отлично. Ведь они друзья и даже однолетки! Когда Хайям-поэт пишет стихи, Хайям-математик нередко чертит свои математические доказательства на полях его рукописи. А однажды стихотворные строки одного обнаружились в геометрическом трактате другого.

- Ты читал геометрический трактат Хайяма? - взволнованно перебил его Мате. - Тот самый трактат, где исследуется пятый постулат Эвклидa15?

Незнакомец снисходительно улыбнулся: мог ли не читать его он, постоянный переписчик Хайяма? Это сочинение называется "Комментарии к трудностям во введениях книги Эвклида". Оно состоит из трех частей. В первой речь идет о пятом постулате Эвклида. В двух последующих Хайям излагает учение о числе и числовых отношениях.

Фило ревниво заметал, что есть здесь кое-кто, не только не читавший геометрического трактата Хайяма но и ничего не знающий о пятом постулате Эвклида.

- Кажется, нас с тобой справедливо упрекнули в невежливости, обратился незнакомец к Мате. - Но говорить о пятом постулате Эвклида на ходу... Пожалуй, это не слишком удобно.

- Так не сделать ли нам небольшой привал? - быстро нашелся Фило, всегда готовый отдохнуть и подкрепиться.

- Отчего бы и нет, - согласился незнакомец, взглянув на солнце, времени у нас еще довольно.

КАМЕНЬ ПРЕТКНОВЕНИЯ

Они шли в это время зеленым, окаймленным садами и виноградниками пригородом. Незнакомец сказал, что неподалеку есть подходящее место для отдыха, и вскоре все они очутились в тенистой роще на берегу небольшого ручья.

Фило сейчас же распотрошил свой рюкзак, куда успел-таки тайком от Мате засунуть с дюжину купленных на базаре лепешек. Они оказались как нельзя кстати, особенно незнакомцу, который, кажется, сильно проголодался и устал.

Поев и утолив жажду необычайно вкусной водой из ручья, компания растянулась на траве и примолкла. Мате краешком глаза подметил, как бережно подложил незнакомец полу халата под свою обвязанную платком ношу. Но Фило было не до наблюдений. Щурясь на солнечные просветы в листве, слушая бормотание воды, он и сам бормотал какие-то стихи и, казалось, забыл обо всем на свете:

Немного хлеба, свежая вода

И тень... Скажи, но для чего тогда

Блистательные гордые султаны,

Зачем рабы и нищие тогда?

Как ни тихо он говорил, незнакомец все же расслышал сказанное. Мате видел, как насторожились его глаза, до тех пор задумчивые и рассеянные. А Фило все читал...

Траву, что так душиста и нежна,

Которой гладь ручья окаймлена.

С презреньем не топчи, - а вдруг из праха

Божественной красы взошла она?

- Я вижу, стихи Хайяма милей твоему сердцу, чем пятый постулат Эвклида, - сказал незнакомец неожиданно резко, но от Мате и на сей раз не укрылось, что он растроган и досадует на себя за это.

Верный рыцарь приличий, Фило воспринял его замечание как намек и мужественно приготовился выслушать лекцию, на которую сам же напросился. Он, правда, попытался облегчить свою участь, попросив не посвящать его в сложные доказательства. Пусть ему объяснят самую суть - с него и этого довольно!

- Поистине мир полон противоречий, - развел руками незнакомец. - Ты заранее собираешься принять на веру все, что тебе скажут, тогда как суть как раз в том и состоит, что пятый постулат на веру принимать не желают... Впрочем, дело это и впрямь до того непростое, что мне ничего не остается, как выполнить твою просьбу.

Он устроился поудобнее и начал свой рассказ с того, что всякая сформировавшаяся наука, в особенности наука точная, похожа на прекрасное, совершенное здание, сложенное из хорошо отшлифованных и плотно пригнанных друг к другу каменных плит. Но не всегда, однако, здание было зданием. Было время, когда вместо него существовали всего лишь разрозненные, необработанные, разбросанные по всему свету камни. Сначала их было немного, но постепенно число их возрастало, а вместе с тем возрастала и потребность собрать эти камни воедино, объединить их в прочную соразмерную постройку.

Камень, как известно, добывают в каменоломнях. В обычных каменоломнях работают большей частью рабы и узники, нередко немощные телом, темные разумом. В каменоломнях науки трудятся могучие духом, дерзкие и свободные мыслью.

И все-таки не всякий, кому удается добыть и обтесать свой камень в науке, способен возвести из многих камней, добытых другими, безупречное строение. Для этого нужно быть не только каменотесом, но и зодчим человеком, который заранее представляет себе все здание в целом и знает, каким образом уложить камни так, чтобы каждый из них стал надежной опорой другому.

К таким зодчим принадлежит упомянутый уже Мухаммед ал-Хорезми. К таким зодчим относится и древний грек Аполлоний Пергский, который собрал, изучил, заново продумал все, что касается конических сечений, и создал свою собственную теорию.

Но самым, пожалуй, великим среди всех великих зодчих науки был Эвклид: он воздвиг монументальное здание геометрии, которое доныне остается непревзойденным образцом математической логики. Все накопленные до него богатства геометрии Эвклид объединил в могучую систему, где каждая теорема служит опорой последующей.

Он был не первым, кто брался за это дело. Подобную же работу пытался совершить Гиппократ Хиосский, живший за двести лет до Эвклида. Потом попытку его продолжил Леон, затем Тевдий из Магнезии и, наконец, сам Аристотель! Но лишь Эвклиду оказалось под силу довести неслыханный труд до конца...

- Как и всякое здание, - продолжал незнакомец, - геометрия Эвклида покоится на фундаменте. Это пять постулатов, девять аксиом и двадцать три начальных определения. Первый постулат гласит...

Услыхав столь многообещающее начало, Фило просто в ужас пришел. Неужто на голову его хотят обрушить такое обилие новых сведений сразу? Увы, увы и в третий раз увы, ему этого не вынести! Ведь он, если уж говорить по совести, даже не знает, какая разница между постулатом и аксиомой...

- Разница, в сущности, невелика, - сказал незнакомец. - И то и другое - положения, вытекающие из нашего опыта и принимаемые на веру без доказательств по той причине, что доказать их невозможно.

- Действительно, - подтвердил Мате, - разница настолько несущественна, что у нас - я хочу сказать, в наших краях, - постулаты попросту причисляются к аксиомам.

- Ну, приравнять постулаты Эвклида к аксиомам - дело нехитрое, возразил незнакомец. - Куда сложнее уравнять их между собой. Очень уж они неравноправны! Первые четыре постулата совершенно надежны и вполне могут быть приняты без доказательств. Зато пятый...

Он выразительно умолк, и вялое равнодушие Фило сразу же сменилось жадным любопытством.

- Ну, - нетерпеливо понукал он, - что же ты запнулся? Договаривай.

- Потому и запнулся, что пятый постулат, вместо того чтобы исполнять обязанности краеугольного камня, предпочел превратиться в камень преткновения, - с усмешкой пояснил незнакомец. - Это так называемый постулат о параллельных, утверждающий, что если при пересечении двух прямых третьей внутренние односторонние углы меньше двух прямых, то они пересекутся по ту сторону, где сумма этих углов меньше.

- Положим, у нас этот постулат излагается короче, - снова вмешался Мате. - Через точку, лежащую вне прямой, в той же плоскости можно провести только одну прямую, параллельную первой.

- Тоже неплохо, - согласился незнакомец. - Постулат о параллельных нередко излагают по-разному. Хайям, например, заменяет его другим, равнозначным утверждением: два перпендикуляра к одной прямой не могут ни сходиться, ни расходиться. Но, к сожалению, утверждение это столь же неубедительно, как и формулировка Эвклида...

- Не понимаю, что тут неубедительного? - недоумевал Фило. - Ведь даже мне ясно, что через точку, лежащую в той же плоскости, что и прямая, можно провести только одну параллельную.

На свободном от травы клочке земли он веточкой начертил прямую, поставил точку и провел через нее параллельную, как ему казалось, линию.

Мате оглядел чертеж скептически: почему, собственно, Фило думает, что нарисовал параллельную?

- Как - почему? Да ведь сразу видно!

- А если линия все же чуть-чуть отклоняется?

- Ну, чуть-чуть не считается, - добродушно отмахнулся Фило.

- Вы так думаете? Но если продлить вашу чуть-чуть неточную параллель, то рано или поздно она все-таки пересечется с прямой.

- А я возьму и проведу точную. С помощью линейки и угольника. Она-то уж наверняка не пересечется.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*