KnigaRead.com/
KnigaRead.com » Справочная литература » Справочники » Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике

Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Ангелина Яковлева, "Ответы на экзаменационные билеты по эконометрике" бесплатно, без регистрации.
Перейти на страницу:

Если уравнение модели содержит две экономические переменные – эндогенную yiи предопределенную xi, то модель имеет вид:

Данная модель называется моделью линейной парной регрессии и содержит три неизвестных параметра:

β0 , β1 , σ. (3)

Предположим, что имеется выборка: (х1, y1), (х2, y2),… (хn , yn) (4)

Тогда в рамках исследуемой  модели данные величины связаны следующим образом:

y1 = a0 + a1 * x1 + u1,

y2 = a0 + a1 * x2 + u2, (5)

yn= a0 + a1 * x n + u n.

Данная система называется системой уравнений наблюдения объекта в рамках исследуемой линейной модели или схемой Гаусса-Маркова.

Компактная запись схемы Гаусса-Маркова:

где

– вектор-столбец известных значений эндогенной переменной yiмодели регрессии;

– вектор-столбец неизвестных значений случайных возмущений εi;

– матрица известных значений предопределенной переменной xi модели;

β = (β0  β1 )Т (10) – вектор неизвестных коэффициентов модели регрессии.

Обозначим оценку вектора неизвестных коэффициентов модели регрессии как

Данная оценка вычисляется на основании выборочных данных (7) и (9) с помощью некоторой процедуры:


где P (X, ỹ) – символ процедуры.

Процедура (12) называется линейной относительно вектора (7) значений эндогенной переменной yi, если выполняется условие:

где

(14) – матрица коэффициентов, зависящих только от выборочных значений (9) предопределенной переменной хi.

Теорема Гаусса-Маркова. Пусть матрица Х коэффициентов уравнений наблюдений (6) имеет полный ранг, а случайные возмущения (8) удовлетворяют четырем условиям:

E(ε1) = E(ε2) = … = E(εn) = 0, (15)

Var(ε1) = Var(ε2) = … = Var(εn) =  σ2(16)

Cov(εi, εj) = 0 при i≠j(17)

Cov(xi,εj) = 0 при всех значениях i и j (18)

В этом случае справедливы следующие утверждения:

а) наилучшая линейная процедура (13), приводящая к несмещенной и эффективной оценке (11), имеет вид:

б) линейная несмещенная эффективная оценка (19) обладает свойством наименьших квадратов:

в) ковариационная матрица оценки (19) вычисляется по правилу:

г) несмещенная оценка параметра σ2 модели (2) находится по формуле:

Следствие теоремы Гаусса-Маркова. Оценка

доставляемая процедурой (19) метода наименьших квадратов, может быть вычислена в процессе решения системы двух линейных алгебраических уравнений:

Данная система называется системой нормальных уравнений. Ее коэффициенты и свободные члены определяются по правилам:

[x] = x1 + x2 +…+ xn,

[y] = y1 + y2 +…+ yn, (24)

x2] = x12 + x22 +…+ xn2,

[xy] = x1*y1 + x2*y2 + … + xn*yn.

Явный вид решения системы (23):


13. Система нормальных уравнений и явный вид ее решения при оценивании методом наименьших квадратов линейной модели парной регрессии

Предположим, что в ходе регрессионного анализа была установлена линейная взаимосвязь между исследуемыми переменными х и у, которая описывается моделью регрессии вида:


В результате оценивания данной эконометрической модели определяются оценки неизвестных коэффициентов. Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).

Метод наименьших квадратов позволяет получить такие оценки параметров β0 и β1, при которых сумма квадратов отклонений фактических значений результативного признака y от расчетных (теоретических) ỹ минимальна:

В процессе минимизации функции (1) неизвестными являются только значения коэффициентов β0 и β1, потому что значения результативной и факторной переменных известны из наблюдений. Для определения минимума функции двух переменных вычисляются частные производные этой функции по каждому из оцениваемых параметров и приравниваются к нулю. Результатом данной процедуры будет стационарная система уравнений для функции (2):

.

Если разделить обе части каждого уравнения системы на (-2), раскрыть скобки и привести подобные члены, то получим систему нормальных уравнений для функции регрессии вида yi=β0+β1xi:


Если решить данную систему нормальных уравнений, то мы получим искомые оценки неизвестных коэффициентов модели регрессии β0 и β1:


где

– среднее значение зависимой переменной;


– среднее значение независимой переменной;


– среднее арифметическое значение произведения зависимой и независимой переменных;

– дисперсия независимой переменной;

Gcov (x, y) – ковариация между зависимой и независимой переменными.

Таким образом, явный вид решения системы нормальных уравнений может быть записан следующим образом:

14. Оценка коэффициентов модели парной регрессии с помощью выборочного коэффициента регрессии

Помимо метода наименьших квадратов, с помощью которого в большинстве случаев определяются неизвестные параметры модели регрессии, в случае линейной модели парной регрессии осуществим иной подход к решению данной проблемы.

Линейная модель парной регрессии может быть записана в виде:

где у – значения зависимой переменной;

х – значения независимой переменной;

– среднее значение зависимой переменной, которое определяется на основании выборочных данных вычисленное по формуле средней арифметической:

уi– значения зависимой переменной,

n – объём выборки;

– среднее значение независимой переменной, которое определяется на основании выборочных данных вычисленное по формуле средней арифметической:

Параметр βyx называется выборочным коэффициентом регрессии переменной у по переменной х. Данный параметр показывает, на сколько в среднем изменится зависимая переменная у при изменении независимой переменной х на единицу своего измерения.

Выборочный коэффициент регрессии переменной у по переменной х рассчитывается по формуле:

где ryx – это выборочный парный коэффициент корреляции между переменными у и х, который рассчитывается по формуле:

– среднее арифметическое значение произведения зависимой и независимой переменных:

Sy – показатель выборочного среднеквадратического отклонения зависимой переменной у. Этот показатель характеризует, на сколько единиц в среднем отклоняются значения зависимой переменной у от её среднего значения. Он рассчитывается по формуле:

– среднее значение из квадратов значений зависимой переменной у:

– квадрат средних значений зависимой переменной у:

Sx – показатель выборочного среднеквадратического отклонения независимой переменной х. Этот показатель характеризует, на сколько единиц в среднем отклоняются значения независимой переменной х от её среднего значения. Они рассчитывается по формуле:

– среднее значение из квадратов значений независимой переменной х:

– квадрат средних значений независимой переменной х:

При использовании рассмотренного подхода оценивания неизвестных параметров линейной модели парной регрессии, следует учитывать что ryx=rxy, однако βyx≠βxy.

15. Оценка дисперсии случайной ошибки модели регрессии

При проведении регрессионного анализа основная трудность заключается в том, что генеральная дисперсия случайной ошибки является неизвестной величиной, что вызывает необходимость в расчёте её несмещённой выборочной оценки.

Несмещённой оценкой дисперсии (или исправленной дисперсией) случайной ошибки линейной модели парной регрессии называется величина, рассчитываемая по формуле:

где n – это объём выборочной совокупности;

еi– остатки регрессионной модели:

Для линейной модели множественной регрессии несмещённая оценка дисперсии случайной ошибки рассчитывается по формуле:

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*