KnigaRead.com/
KnigaRead.com » Справочная литература » Справочники » Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике

Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Ангелина Яковлева, "Ответы на экзаменационные билеты по эконометрике" бесплатно, без регистрации.
Перейти на страницу:

Временными данными называется совокупность экономической информации, которая характеризует один и тот же объект, но за разные периоды времени.

Отдельно взятый временной ряд можно рассматривать как выборку из бесконечного ряда значений показателей во времени. Примером временных данных могут служить данные о динамике индекса потребительских цен, ежедневные обменные курсы валют.

Отличия временных данных от пространственных данных:

1) единицы временных рядов подвержены явлению автокорреляции (зависимости между прошлыми и текущими наблюдениями временного ряда), т. е. они не являются статистически независимыми в отличие от единиц случайной пространственной выборки;

2) единицы временных рядов не являются одинаково распределёнными величинами;

3) в отличие от пространственных данных временные данные естественным образом упорядочены во времени.

Панельными данными называются данные, содержащие сведения об одном и том же множестве объектов за ряд последовательных периодов времени.

Панельные данные являются обобщением или комбинацией пространственных и временных данных. Примером панельных данных могут служить показатели хозяйственной деятельности совокупности предприятий, которые собираются каждый год. В этом случае мы получим массив данных, в котором содержатся и данные об однородных объектах за один и тот же период времени, и последовательные значения одной экономической переменной в различные периоды времени. Но если совокупность предприятий из года в год будет различна, то такие данные уже не будут панельными.

Набором признаков называется совокупность экономической информации, которая характеризует изучаемый процесс или объект.

Признаки взаимосвязаны между собой, и при этом они могут выступать в одной из двух ролей:

1) в роли результативного или зависимого признака;

2) в роли факторного или независимого признака.

В эконометрических моделях результативный признак называется объясняемой переменной, а факторный признак называется объясняющей переменной.

В эконометрическом моделировании выделяют следующие виды экономических переменных:

1) экзогенные или независимые переменные (х), значения которых задаются извне. В определённой степени экзогенные переменные поддаются управлению;

2) эндогенные или зависимые переменные (у), значения которых определяются внутри модели;

3) лаговые переменные – это экзогенные или эндогенные переменные, которые относятся к предыдущим моментам времени и находятся в эконометрической модели одновременно с переменными, относящимися к текущему моменту времени. Например, xt-1 – это лаговая экзогенная переменная, а yt-1 – это лаговая эндогенная переменная;

4) предопределённые или объясняющие переменные – это лаговые (xt-1) и текущие (х) экзогенные переменные, а также лаговые эндогенные переменные (yt-1).

5) фиктивные переменные используются в эконометрических моделях для характеристики явления или процесса, в отношении которого нет данных по качественному признаку;

6) переменные-заместители искусственно вводятся в эконометрическую модель для характеристики явления или процесса, который не может быть количественно охарактеризован. При этом переменная-заместитель тесно коррелирует с этим явлением.

В эконометрических исследованиях большое внимание уделяется проблеме данных, т. е. специальным методам работы при наличии данных с пропусками, влиянию агрегирования данных на эконометрические измерения. Зачастую по единицам исследуемой совокупности информация отсутствует, а в наличии имеются данные, характеризующие более крупные единицы (агрегаты). Следует отметить, что при агрегировании временных данных опасность искажения результатов измерений гораздо больше, чем при агрегировании пространных данных, потому что с одной стороны, добавляется эффект автокорреляции, а с другой – происходит погашение случайной компоненты.

9. Общая модель парной (однофакторной) регрессии

Общая модель парной регрессии характеризует связь между двумя переменными, которая проявляется как некоторая закономерность лишь в среднем в целом по совокупности наблюдений.

Регрессионным анализом называется определение аналитического выражения связи между исследуемыми переменными, в котором изменение результативной переменной происходит под влиянием факторной переменной.

Модель регрессии или уравнение регрессии позволяет количественно оценить взаимосвязь между исследуемыми переменными.

Предположим, что имеется набор значений двух переменных: yi (результативная переменная) и xi (факторная переменная). Между этими переменными существует зависимость вида: y = f (x).

Задача регрессионного анализа состоит в том, чтобы по данным наблюдений определить такую функцию ỹ = f (x), которая наилучшим образом описывала исследуемую зависимость между переменными.

Для определения аналитической формы зависимости между исследуемыми переменными применяются следующие методы:

1) графический метод или визуальная оценка характера связи. В этом случае на линейном графике по оси абсцисс откладываются значения факторной переменной х, а по оси ординат – значения результативной переменной у. Затем на пересечении соответствующих значений отмечаются точки. Полученный точечный график в системе координат (х, у) называется корреляционным полем. Линия, которая соединяет точки на графике, называется эмпирической линией. По её виду можно судить не только о наличии, но и о форме зависимости между изучаемыми переменными;

2) на основе теоретического и логического анализа природы изучаемых явлений, их социально-экономической сущности;

3) определение аналитической формы зависимости между переменными экспериментальным путём.

При исследовании зависимости между двумя переменными чаще всего используется линейная форма связи. Это связано с двумя обстоятельствами:

1) чёткая экономическая интерпретация параметров линейной модели регрессии;

2) в большинстве случаев нелинейные модели регрессии преобразуются к линейному виду.

Общий вид модели парной регрессии зависимости переменной у от переменной х:

yi=β0+β1xi+εi,

где yi– результативные переменные,

xi– факторные переменные,

β0, β1 – параметры модели регрессии, подлежащие оцениванию;

εi – случайная ошибка модели регрессии. Данная величина является случайной, она характеризует отклонения реальных значений результативных переменных от теоретических, рассчитанных по уравнению регрессии.

Присутствие случайной ошибки в модели регрессии порождено следующими источниками:

1) нерепрезентативность выборки. Модель парной регрессии в большинстве случаев является большим упрощением истинной зависимости между переменными, потому что в модель входит только одна факторная переменная, не способная полностью объяснить вариацию результативной переменной. При этом результативная переменная может быть подвержена влиянию множества других факторных переменных в гораздо большей степени;

2) ошибки, возникающие при измерении данных;

3) неправильная функциональная спецификация модели.

Коэффициент β1, входящий в модельпарной регрессии, называется коэффициентом регрессии. Он характеризует, на сколько в среднем изменится результативная переменная у при условии изменения факторной переменной х на единицу своего измерения. Знак коэффициента регрессии указывает на направление связи между переменными:

1) если β1›0, то связь между изучаемыми переменными (с уменьшением факторной переменной х уменьшается и результативная переменная у, и наоборот);

2) если β1‹0, то связь между изучаемыми переменными (с увеличением факторной переменной х результативная переменная у уменьшается, и наоборот).

Коэффициент β0, входящий в модель парной регрессии, трактуется как среднее значение результативной переменной у при условии, что факторная переменная х равна нулю. Но если факторная переменная не имеет и не может иметь нулевого значения, то подобная трактовка коэффициента β0 не имеет смысла.

Общий вид модели парной регрессии в матричном виде:

Y= X* β+ ε,

где

– случайный вектор-столбец значений результативной переменной размерности n x 1;


– матрица значений факторной переменной размерности n x 2. Первый столбец является единичным, потому что в модели регрессии коэффициент β0 умножается на единицу;

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*