KnigaRead.com/
KnigaRead.com » Справочная литература » Справочники » Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике

Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Ангелина Яковлева, "Ответы на экзаменационные билеты по эконометрике" бесплатно, без регистрации.
Перейти на страницу:

Докажем данное утверждение. Рассчитаем показатель предельной производительности факторной переменной затрат труда L:

Следовательно, предельная производительность факторной переменной L всегда больше нуля.

Аналогично доказывается, что предельная производительность второй факторной переменной объёма основных фондов К также больше нуля, что говорит о росте объёма произведённой продукции Q с ростом факторной переменной К и при фиксированном значении факторной переменной L.

Изоквантой для двухфакторной производственной функции Солоу называется кривая, которая характеризуется равенством β(K,L)=const.

Для производственной функции Солоу можно рассчитать показатели эластичности:

1) частный коэффициент эластичности функции Солоу по факторной переменной К рассчитывается по формуле:

2) частный коэффициент эластичности функции Солоу по факторной переменной L рассчитывается по формуле:


54. Многофакторные производственные функции

Многофакторной производственной функцией называется функция, которая характеризует зависимость объёма производства от n-го количества факторов производства.

y=f(xi),

где

Многофакторные производственные функции полезны тем, что на их основе можно рассчитать целый ряд важнейших экономических показателей.

К основным показателям многофакторных производственных функций относятся:

1) показатель средней производительности (эффективности, отдачи) i-го фактора при условии фиксированности всех остальных факторов:

2) показатель предельной производительности (эффективности, отдачи) i-го фактора, который характеризует приращение объёма производства на единицу приращения i-го фактора, рассчитывается как частная производная по факторной переменной xi:

3) для определения характера изменения предельной производительности с изменением объёма i-го фактора при постоянном значении всех остальных факторов, включённых в модель, рассчитывается частная производная второго порядка по факторной переменной xi:

Если показатель

больше нуля, то предельная производительность возрастает с ростом объёма i-ой факторной переменной.

Если показатель

равен нулю, то можно найти такое значение объёма i-ой факторной переменной, при котором предельная производительность будет или минимальной или максимальной.

4) показатель частной эластичности i-го ресурса для многофакторной производственной функции характеризует относительное изменение результата производства на единицу относительного изменения i-ой факторной переменной:

5) потребность производства в i-том факторе выражается через функциональную зависимость вида:

xi=φ(y,x1…xi-1,xi+1…xn).

6) для любой пары факторов производства i и j можно рассчитать предельную норму замещения j-ой факторной переменной i-той факторной переменной. Эта норма равна взятому со знаком минус отношению показателей предельной производительности i-ой и j-ой факторных переменных:

При выборе конкретного вида производственной функции исследователь должен руководствоваться закономерностями изменения всех рассмотренных показателей. В некоторых случаях выбранную форму производственной функции приходится отвергать, потому что соответствующая ей система показателей противоречит результатам качественного анализа или эмпирическим данным. С другой стороны предварительные заключения о характере изменений рассмотренных показателей могут стать основным доводом в пользу выбора той или иной формы производственной функции.

55. Модели бинарного выбора

Результативная переменная у в нормальной линейной модели регрессии является непрерывной величиной, способной принимать любые значения из заданного множества. Но помимо нормальных линейных моделей регрессии существуют модели регрессии, в которых переменная у должна принимать определённый узкий круг заранее заданных значений.

Моделью бинарного выбора называется модель регрессии, в которой результативная переменная может принимать только узкий круг заранее заданных значений

В качестве примеров бинарных результативных переменных можно привести:

Приведенные в качестве примеров бинарные переменные являются дискретными величинами. Бинарная непрерывная величина задаётся следующим образом:

Если стоит задача построения модели регрессии, включающей результативную бинарную переменную, то прогнозные значения yiпрогноз, полученные с помощью данной модели, будут выходить за пределы интервала [0;+1] и не будут поддаваться интерпретации. В этом случае задача построения модели регрессии формулируется не как предсказание конкретных значений бинарной переменной, а как предсказание непрерывной переменной, значения которой заключаются в интервале [0;+1].

Решением данной задачи будет являться кривая, удовлетворяющая следующим трём свойствам:

1) 1)    F(–∞)=0;

2) F(+∞)=1;

3) F(x1)>F(x2) при условии, чтоx1> x2.

Данным трём свойствам удовлетворяет функция распределения вероятности.

Модель парной регрессии с результативной бинарной переменной с помощью функции распределения вероятности можно представить в следующем виде:

prob(yi=1)=F(β0+β1xi),

где prob(yi=1) – это вероятность того, что результативная переменная yi примет значение, равное единице.

В этом случае прогнозные значения yiпрогноз, полученные с помощью данной модели, будут лежать в пределах интервала [0;+1].

Модель бинарного выбора может быть представлена с помощью скрытой или латентной переменной следующим образом:

Векторная форма модели бинарного выбора с латентной переменной:

В данном случае результативная бинарная переменная yi принимает значения в зависимости от латентной переменной yi*:

Модель бинарного выбора называется пробит-моделью или пробит-регрессией (probit regression), если она удовлетворяет двум условиям:

1) остатки модели бинарного выбора εi являются случайными нормально распределёнными величинами;

2) функция распределения вероятностей является нормальной вероятностной функцией.

Пробит-регрессия может быть представлена с помощью выражения:

NP(yi)=NP(β0+β1x1i+…+βkxki),

где NP – это нормальная вероятность (normal probability).

Модель бинарного выбора называется логит-моделью или логит-регрессией (logit regression), если случайные остатки εi подчиняются логистическому закону распределения.

Логит-регрессия может быть представлена с помощью выражения:

Данная модель логит-регрессии характеризуется тем, что при любых значениях факторных переменных и коэффициентов регрессии, значения результативной переменной yi будут всегда лежать в интервале [0;+1].

Обобщённый вид модели логит-регрессии:

Достоинством данной модели является то, что результативная переменная yi может произвольно меняться внутри заданного числового интервала (не только от нуля до плюс единицы).

Логит-регрессия относится к классу функций, которые можно привести к линейному виду. Это осуществляется с помощью преобразования, носящего название логистического или логит преобразования, которое можно проиллюстрировать на примере преобразования обычной вероятности р:

Качество построенной логит-регрессии или пробит-регрессии характеризуется с помощью псевдо коэффициента детерминации, который рассчитывается по формуле:

Если значение данного коэффициента близко к единице, то модель регрессии считается адекватной реальным данным.

56. Метод максимума правдоподобия

Метод максимума правдоподобия (maximum likelihood function) применяется для определения неизвестных коэффициентов модели регрессии и является альтернативой методу наименьших квадратов. Суть данного метода состоит в максимизации функции правдоподобия или её логарифма.

Общий вид функции правдоподобия:

где

– это геометрическая сумма, означающая перемножение вероятностей по всем возможным случаям внутри скобок.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*