Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике
yi=β0+β1xi,
точечный коэффициент эластичности определяется по формуле:
В знаменателе данного показателя стоит значение линейной функции в точке х1.
Для полиномиальной функции второго порядка (параболической функции) вида:
точечный коэффициент эластичности определяется по формуле:
В знаменателе данного показателя стоит значение параболической функции в точке х1.
Для показательной функции вида:
точечный коэффициент эластичности определяется по формуле:
Для степенной функции вида:
точечный коэффициент эластичности определяется по формуле:
Докажем данное утверждение.
Запишем точечный коэффициент эластичности для степенной функции вида
через первую производную результативной переменной по заданной факторной переменной x1:
Следовательно, Э(x1) = β1, что и требовалось доказать.
Чаще всего коэффициенты эластичности применяются в анализе производственных функций. Однако их расчёт не всегда имеет смысл, потому что в некоторых случаях интерпретация факторных переменных в процентном отношении невозможна или бессмысленна.
49. Производственные функции
Производственной функцией называется экономико-математическая модель, с помощью которой можно охарактеризовать зависимость результатов производственной деятельности предприятия, отрасли или национальной экономики в целом от повлиявших на эти результаты факторов.
Факторами производственной функции могут являться следующие переменные:
1) объём выпущенной продукции (в стоимостном или натуральном выражении);
2) объём основного капитала или основных фондов;
3) объём трудовых ресурсов или трудовых затрат (измеряемое количеством рабочих или количеством человеко-дней);
4) затраты электроэнергии;
5) количество станков, потребляемое в производстве и др.
Однофакторные производственные функции (т. е. функции с одной факторной переменной) относятся к наиболее простым производственным функциям. В данном случае результативной переменной является объём производства у, который зависит от единственной факторной переменной х. В качестве факторной переменной может выступать любая из вышеназванных переменных.
Основными разновидностями однофакторных производственных функций являются:
1) линейная однофакторная производственная функция вида:
y=β0+β1x,
например, производственная функция зависимости объёма производимой продукции от величины затрат определённого ресурса. Линейная однофакторная производственная функция характеризуется двумя особенностями:
а) если величина факторной переменной х равна нулю, то объём производства у не будет нулевым, потому что y=β0(β0›0);
б) объём произведённой продукции у неограниченно возрастает при увеличении затрат определённого фактора х на постоянную величину β1 (β1›0). Однако данное свойство линейной однофакторной производственной функции чаще всего справедливо только на практике;
2) параболическая однофакторная производственная функция вида:
при условиях β0›0, β1›0, β2›0.
Данная функция характеризуется тем, что при росте затрат ресурса х, объём произведённой продукции у вначале возрастает до некоторой максимальной величины, а затем снижается до нуля;
3) степенная однофакторная производственная функция вида:
при условиях β0›0, β1›0.
Данная функция характеризуется тем, что с ростом затрат ресурса х, объём производства у возрастает без ограничений;
4) показательная однофакторная производственная функция вида:
при условиях 0‹β1‹0.
Данная функция характеризуется тем, что с ростом затрат ресурса х объём произведённой продукции у также растёт, стремясь при этом к значению параметра β0.
5) гиперболическая однофакторная производственная функция вида:
Данная функция практически не применяется при изучении зависимости объёма производства от затрат какого-либо ресурса, потому что нет необходимости в изучении ресурсов, увеличение которых приводит к уменьшению объёма производства.
Двухфакторные производственные функции (функции с двумя факторными переменными) характеризуют зависимость объёма производства от каких-либо двух факторов, чаще от факторов объёма основного капитала и трудовых ресурсов. Чаще всего используются такие двухфакторные производственные функции как функции Кобба-Дугласа и Солоу.
Для наглядного изображения двухфакторных производственных функций строят графики семейства кривых, основанных на различном сочетании двух факторов, но дающих в результате одно и то же значение объёма выпуска продукции. Кривые, построенные на основании равенства f(x1,x2)=const, называются изоквантами.
Изоквантой называется сочетание минимально необходимых ресурсных затрат для заданного уровня объёма производства.
Многофакторные производственные функции используются для изучения зависимости объёма производства от n-го количества факторов производства.
Общий вид многофакторной производственной функции:
y=f(xi),
где
50. Двухфакторная производственная функция Кобба-Дугласа
Теория производственных функций была разработана американскими учёными Д. Коббом и П. Дугласом, опубликовавшими в 1928 г. опубликовали работу «Теория производства».
Эти учёные предложили одну из наиболее известных разновидностей производственных функций, носящей название функции Кобба-Дугласа.
Общий вид функции Кобба-Дугласа:
где а – числовой параметр производственной функции;
xi – i-тый аргумент или i-ый фактор производственной функции;
ai – показатель степени i-го аргумента.
Наиболее часто применяется двухфакторная форма функции Кобба-Дугласа f(K,L):
Q=A*Ka*Lβ,
где Q – объём выпущенной продукции (в стоимостном или натуральном выражении);
K – объём основного капитала или основных фондов;
L – объём трудовых ресурсов или трудовых затрат (измеряемое количеством рабочих или количеством человеко-дней).
A,a,β – неизвестные числовые параметры производственной функции, которые подчиняются условиям:
1) 0≤а≤1;
2) 0≤β≤1;
3) A›0;
4) a+β=1.
На основании четвёртного условия a+β=1, функция Кобба-Дугласа может быть представлена в виде:
Q=A*Ka*L1-а.
Данная производственная функция позволяет объяснить уровень совокупного выпуска Q количествами затраченного капитала K и труда L основных факторов производства.
На двухфакторную функцию Кобба-Дугласа накладываются определённые ограничения, которые необходимо учитывать при спецификации модели:
1)
2)
3)
4)
5)
6)
Первое и второе ограничения означают, что объём выпускаемой продукции увеличивается при постоянном значении одного из факторов и росте другого фактора. Однако если один из факторов производства фиксирован, а другой фактор возрастает, то каждая дополнительная (предельная) единица возрастающего фактора менее полезна (с точки зрения прироста выпуска продукции), чем предыдущая единица.
Третье и четвёртное ограничения означают, что при фиксированном значении одного из факторов последовательное увеличение другого фактора будет приводить к сокращению прироста значения Q.
Пятое и шестое ограничения означают, что каждый из факторов производства необходим в том смысле, что если один из факторов равен нулю (K=0 или L=0), то и объём производства также равен нулю Q=0.
51. Показатели двухфакторной производственной функции Кобба-Дугласа
Двухфакторную производственную функцию Кобба-Дугласа f(K,L) можно представить в виде:
Q=A*Ka*Lβ,
где Q – объём выпущенной продукции (в стоимостном или натуральном выражении);
K – объём основного капитала или основных фондов;
L – объём трудовых ресурсов или трудовых затрат (измеряемое количеством рабочих или количеством человеко-дней).