БСЭ БСЭ - Большая Советская Энциклопедия (МИ)
Лит.: Одинцова Е. Н., Микробиологические методы определения витаминов, М., 1959; Иерусалимский Н. Д., Основы физиологии микробов, М., 1963; Роуз Э., Химическая микробиология, пер. с англ., М., 1971.
А. А. Имшенецкий.
Микроорганизмы
Микрооргани'змы, микробы, обширная группа преимущественно одноклеточных живых существ, различимых только под микроскопом и организованных проще, чем растения и животные. К М. относятся бактерии , микоплазмы , актиномицеты , дрожжи , микроскопические грибы и водоросли (иногда к М. причисляются простейшие и вирусы ). М. делят на прокариотов (примитивное ядро содержит одну хромосому, не имеет оболочки и делится перетяжкой, в цитоплазме отсутствуют митохондрии , большинство форм лишено хроматофоров) и эукариотов, сходных с клетками высших растений и животных (ядро содержит набор хромосом, имеет оболочку; у многих нормальный половой цикл, клетки их содержат эндоплазматическую сеть и митохондрии, у фотосинтетиков — хлоропласты). К М.-прокариотам относят бактерии, микоплазмы, актиномицеты, синезелёные водоросли, к М.-эукариотам — дрожжи, микроскопические грибы и водоросли. Изучением М. занимается микробиология .
Морфология и жизненный цикл М. очень разнообразны. Так, большинство М. — одноклеточные. Однако многие плесневые грибы имеют многоклеточный мицелий. М., как правило, не содержат хлорофилла , но пурпурные и зелёные фотоавтотрофные бактерии, как и микроскопические водоросли, содержат фотосинтетические пигменты — бактериохлорофиллы и хлорофилл. Бактерии размножаются делением, дрожжи и микобактерии — почкованием, плесневые грибы — делением клеток и образованием конидий и спор. Бактерии произошли от различных в систематическом отношении организмов, актиномицеты родственны грибам, некоторые нитчатые бактерии близки к синезелёным водорослям, спирохеты — к простейшим и т.д. Все М. делят на патогенные (болезнетворные) и непатогенные. Возбудители большинства инфекционных заболеваний — бактерии, значительно реже — дрожжи, плесневые грибы, актиномицеты.
Микроскопические грибы, образующие пушистые налёты (колонии) белого, зелёного или чёрного цвета на пищевых продуктах, стали известны человеку раньше, чем дрожжи или бактерии. Изучение дрожжей и бактерий с помощью микроскопа было осложнено тем, что они выращивались на жидких питательных средах, что затрудняло получение чистых культур . Введение в практику плотных питательных сред открыло возможности для выращивания изолированных колоний определённого вида бактерий или дрожжей и тем самым — для изучения их различных свойств. Разработаны методы характеристики и определения систематического положения М. (см. Микробиологическая техника ).
М. широко распространены в природе. В 1 г почвы или грунта водоёма может содержаться 2—3 млрд. М. Полагают, что современной микробиологии известно не более 10% видов М., существующих в природе: ежегодно описываются всё новые роды и виды М. (так, в 40—60-е гг. 20 в. число изученных видов актиномицетов возросло с 35 до 350).
В процессе эволюции М. адаптировались к самым различным экологическим условиям. Известны бактерии, размножающиеся при 65—75 °С (см. Термофильные организмы ), психрофильные микроорганизмы , растущие при минус 6 °С, галофильные микроорганизмы , размножающиеся в среде, содержащей до 25% NaCl, бактерии, которые обитают в воде, охлаждающей атомные реакторы, и переносят облучение в 3—4 млн. р, осмофильные дрожжи, живущие в мёде и варенье, ацидофильные бактерии, размножающиеся в кислых средах при pH 1,0, баротолерантные бактерии , выдерживающие давление в несколько сот атм . Необычайная устойчивость М. к различным факторам внешней среды позволяет им занимать крайние границы биосферы: их обнаруживают в грунте океана на глубине 11 км, на поверхности ледников и снега в Арктике, Антарктике и высоко в горах, в почве пустынь, в атмосфере на высоте 20 км и т.д.
Благодаря успехам биохимии М. и особенно развитию генетики микроорганизмов и молекулярной генетики было выяснено, что многие процессы биосинтеза и энергетического обмена (транспорт электронов, цикл трикарбоновых кислот, синтез нуклеиновых кислот, белка и др.) протекают у М. также, как в клетках высших растений и животных. Т. о., в основе роста, развития, размножения как высших, так и низших форм жизни лежат единые процессы. Наряду с этим М. присущи специфические ферментные системы и биохимические реакции, не наблюдаемые у др. существ. На этом основана способность М. разлагать целлюлозу, лигнин, хитин, углеводороды нефти, кератин, воск и др. Необычайно разнообразны у М. пути получения энергии. Хемоавтотрофы получают её за счёт окисления неорганических веществ, фотоавтотрофные бактерии используют энергию света в той части спектра, которая недоступна высшим растениям, и т.д. Некоторые М. способны усваивать молекулярный азот (см. Азотфиксирующие микроорганизмы ), синтезировать белок за счёт самых различных источников углерода, вырабатывать множество биологически активных веществ (антибиотики, ферменты, витамины, стимуляторы роста, токсины и др.). Применение М. в с.-х. практике и промышленности основано на этих специфических особенностях их обмена веществ. См. также ст. Брожение , Микробиологический синтез и литературу при них.
А. А. Имшенецкий.
Микропиле
Микропи'ле (от микро... и греч. pýle — ворота, отверстие), 1) одно или несколько отверстий в оболочке яиц насекомых, паукообразных, некоторых моллюсков, рыб и ряда др. животных, через которые сперматозоид проникает в яйцо. См. также Оплодотворение . 2) Пыльцевход, семявход, отверстие на вершине семяпочки у высших семенных растений, через которое в неё при опылении проникает пыльцевая трубка. М. образуется вследствие того, что остаются несомкнутыми покровы, окружающие семяпочку.
Микропористые резины
Микропо'ристые рези'ны, пористые материалы с размером пор ~ 0,4 мкм, получаемые из твёрдых каучуков и латексов; см. также Пористые резины .
Микропривод
Микроприво'д, электропривод с исполнительным электродвигателем мощностью примерно до 500 вт. Применяется в устройствах автоматики, кино- и радиоаппаратуре, бытовых электроприборах и др. Различают М. постоянного и переменного тока. В качестве регуляторов в М. постоянного тока служат магнитные и транзисторные усилители, в реверсивных М. — двухтактные магнитные усилители с внутренней обратной связью.
В М. переменного тока для управления исполнительными электродвигателями применяют магнитные и магнитно-полупроводниковые усилители, а также преобразователи частоты на транзисторах и тиристорах. При этом частота вращения электродвигателей регулируется изменением амплитуды и частоты напряжения на статорной обмотке. Необходимая жёсткость механических характеристик электродвигателей достигается введением обратной связи по частоте вращения.
Лит.: Авен О. И., Доманицкий С. М., Бесконтактные исполнительные устройства промышленной автоматики, М. — Л., 1960.
Микропричинности условие
Микропричи'нности усло'вие, требование, согласно которому условие причинности (причина должна предшествовать во времени следствию) выполняется вплоть до сколь угодно малых расстояний и промежутков времени. Обычно М. у. относят к расстояниям £ 10-14 см и временам £ 10-24 сек.
В относительности теории показывается, что допущение о существовании физических сигналов, распространяющихся со сверхсветовой скоростью, приводит к нарушению требования причинности. Таким образом, М. у. означает запрет на сверхсветовые сигналы «в малом». В квантовой теории, где физическим величинам ставятся в соответствие операторы , М. у. выступает как требование переставимости любых операторов, относящихся к двум точкам пространства-времени, если эти точки нельзя связать световым сигналом; такая переставимость означает, что физические величины, которым соответствуют эти операторы, могут быть точно определены независимо и одновременно. М. у. существенно в квантовой теории поля , особенно в дисперсионном и аксиоматическом подходах, которые не опираются на конкретные модельные представления о взаимодействии и поэтому могут быть использованы для прямой проверки М. у. В наиболее разработанной части квантовой теории поля — квантовой электродинамике М. у. экспериментально проверено до расстояний ³ 10-15 см (и соответственно, времён ³ 10-25 сек ).