Олег Фейгин - Цепная реакция. Неизвестная история создания атомной бомбы
Конечно же, нечто подобное, только в гораздо более скрытой форме существовало и среди нацистских бонз. Так, прекрасно известно противостояние партий Гиммлера и Бормана, часто доходившее до открытых конфликтов, в которые приходилось вмешиваться самому Гитлеру. В такой обстановке, да еще и в преддверии неминуемого краха Германии, вопросом послевоенного выживания становился контроль, если не обладание ценными ресурсами агонизирующего рейха, среди которых далеко не последние место занимал таинственный объект «Локки» – нацистская А-бомба.
Дальнейшая политическая игра Гиммлера с подобным козырем на руках была всего лишь «делом техники», и немецкий ядерный арсенал в конечном итоге благополучно попал в руки миссии «Алсос». Таким образом, Гровс наконец-то смог продемонстрировать, что на территории «специального инженерного района Манхэттен» якобы создано самое грозное оружие современности. Одну немецкую бомбу тут же взорвали на плато Лос-Аламос, а две оставшиеся стали готовить к кошмарной акции устрашения Японии. Здесь могли столкнуться две программы ядерных исследований – американская и японская, причем последняя бесславно завершилась каким-то странным мощным взрывом на Корейском полуострове в районе города Хыннам. Даже поверхностный анализ заставляет усомниться, что это был оригинальный японский атомный боеприпас, однако, учитывая тесные германо-японские связи, представляется вероятным, что здесь виден след еще одной немецкой А-бомбы.
Загадочна история и с третьей бомбой, сброшенной американскими бомбардировщиками на Японию. Долгое время считалось, что это был некий экспериментальный ядерный фугас, который так и не взорвался в окрестностях Нагасаки, однако в последнее время все чаще приходиться слышать, что речь идет совсем о другой цели – Физико-химическом институте в Токио. Именно здесь проводились основные работы по японскому атомному проекту «Ни». Как известно, третий атомный боезаряд по неизвестной причине не взорвался и был передан в штаб советских войск, пленивших Квантунскую армию.
Дальнейшая судьба этой четвертой (или пятой?) немецкой бомбы неизвестна. Скорее всего, она попала к своим создателям в Сухумский физико-технический институт, где работала большая группа пленных – сотрудников «Уранового клуба», включая крупных ученых, конструкторов и инженеров Третьего рейха, работавших над ядерным оружием, таких как Манфред фон Арденне, Густав Герц, Вернер Цулиус, Гюнтер Вирт, Николаус Риль, Карл Зиммер, Роберт Депель, Питер Тиссен, Хайнс Позе и другие. Судя по всему, немецкие ученые трудились весьма успешно, и модернизированный вариант немецко-американско-японской А-бомбы появился уже в 1947 году. Это прекрасно объясняет полное пренебрежение Сталина демаршами американской стороны, неоднократно пытавшейся запугать его «ядерной дубинкой», ведь «отец народов» прекрасно знал истинное положение дел…
Биографический справочник
Выдающийся шотландский физик-теоретик родился в Эдинбурге и происходил из старинного дворянского рода. Учился в Эдинбургском и Кембриджском университетах, где впоследствии занимал должность профессора кафедры экспериментальной физики. Первыми исследованиями Максвелла стали теория цвета и цветного зрения, где ему удалось показать, что вся гамма видимых цветов может быть получена при смешении трех основных тонов, включая красный, желтый и синий. На основании своих исследований Максвелл изобрел один из способов цветной фотографии и объяснил природу дальтонизма. Занимаясь теоретической астрономией, он предсказал структуру колец Сатурна и обосновал, почему они не могут быть жидкими, как считалось раньше, а должны, скорее всего, состоять из твердых частиц и фрагментов планетного вещества.
Важнейшим его вкладом в науку является создание математической основы теории электромагнетизма, хотя сам Максвелл так и не дожил до безоговорочного признания своей замечательной теории. Окончательно волновую природу света и правильность уравнений Максвелла подтвердили только опыты Генриха Герца в 1888 г., а до этого многие физики, включая самого Герца, с большой настороженностью относились к столь необычной для того времени теории.
Кроме всего прочего, Максвелл внес громадный вклад в становление молекулярной физики и статистической механики, выведя распределение молекул газа по скоростям как фундаментальную основу молекулярно-кинетической теории вещества.
Оливер Хевисайд (1850–1925)Выдающийся английский инженер-электрофизик родился в Лондоне в семье Томаса Хевисайда – гравера и художника. В раннем детстве переболел скарлатиной и потерял слух, поэтому, несмотря на школьные успехи, оставил учебу в 16 лет и самостоятельно освоил основы телеграфии и электротехники, а также немецкий и датский языки.
В 1868 г. Оливер устраивается в Дании телеграфистом и через три года возвращается в Англию на должность старшего телеграфиста в Большой северной телеграфной компании. В 1872 г. он публикует первые работы по электричеству, серьезно заинтересовавшие Джеймса Максвелла, упомянувшего о них во втором издании «Трактата об электричестве и магнетизме». Это вдохновляет Хевисайда на дальнейшие исследования, и в 1874 г. он оставляет службу, чтобы заниматься исключительно научными изысканиями. В этот период Хевисайд разработал теорию линий передачи со своими знаменитыми «телеграфными уравнениями», доказав, что равномерно распределенная емкость телеграфной линии одновременно минимизирует затухание и искажение сигнала. В 1880 г. он исследовал скин-эффект в телеграфных линиях передачи и переработал уравнения Максвелла в терминах векторного анализа из 20 уравнений с 12-ю переменными, вместо четырех, описывающими движение заряженных частиц и магнитных диполей с электромагнитной индукцией.
В 1880-х гг. Хевисайд разработал основы операционного исчисления, сведя решение дифференциальных уравнений к обыкновенным алгебраическим. В 1887 г. предложил особые катушки индуктивности для коррекции искажений сигналов в трансатлантическом телеграфном кабеле. В 1888–1889 гг. вычислил деформацию электрического и магнитного полей вокруг движущегося заряда в различных средах, предсказав излучение Вавилова – Черенкова, и предвосхитил понятие релятивистского сокращения Лоренца – Фицджеральда. В 1889 г., после открытия Д. Д. Томсоном электрона, разработал концепцию электромагнитной массы.
В 1891 г. за вклад в математическое описание электромагнитных явлений был принят в Королевское общество, а в 1905 г. стал почетным доктором Геттингенского университета.
В 1902 г. Хевисайд теоретически предсказал существование в ионосфере проводящего слоя, позволяющего передавать радиосигналы в обход кривизны земной поверхности. Будучи всю жизнь не в ладах с научным сообществом, в последние годы ученый стал весьма эксцентричен, подписывая письма инициалами W. O. R. M (червь) и используя гранитные глыбы вместо домашней мебели. Скончался в Торки, графство Девоншир. Окончательное признание пришло к нему посмертно.
Антуан Анри Беккерель (1852–1908)Видный французский физик и химик родился 15 декабря 1852 г. в семье известного физика Александра Эдмонда Беккереля, получившего широкую известность благодаря своим исследованиям фосфоресценции и флуоресценции. Крупным ученым в свое время был и дед Анри Антуан Сезар Беккерель, также занимавшийся проблемой фосфоресценции. Все три поколения Беккерелей проживали в доме знаменитого французского натуралиста и естествоиспытателя Ж. Л. Кювье (1769–1832), принадлежащем Национальному музею естественной истории. Именно в этом доме Беккерель и сделал свое выдающееся открытие, отмеченное на мемориальной доске на фасаде здания, гласящей: «В лаборатории прикладной физики Анри Беккерель открыл радиоактивность 1 марта 1896 г.». Анри учился в лицее, затем в Политехнической школе, по окончании которой работал инженером в Институте путей сообщения. Но вскоре его постигло горе: умерла его 20-летняя жена, и молодой вдовец с сыном Жаном, будущим четвертым физиком Беккерелем, переезжает к отцу в Музей естественной истории. Сначала он работает репетитором Политехнической школы, а с 1878 г., после смерти деда, становится ассистентом своего отца.
В 1888 г. Беккерель защищает докторскую диссертацию и ведет вместе с отцом разностороннюю научную работу. Через год его избирают в Парижскую академию наук, а с 1892 г. он становится профессором Национального музея естественной истории.
В 1903 г. вместе с четой Кюри Беккерель стал лауреатом Нобелевской премии по физике «за открытие радиоактивности». В июне 1908 г. Академия избрала его непременным секретарем физического отделения, а 25 августа того же года Беккерель неожиданно умер.
Хендрик Антон Лоренц (1853–1928)Родился в Арнеме, его отец содержал ясли – интернат для младенцев, а мать умерла, когда ему исполнилось всего четыре года. В средней школе Арнема Лоренц получал только отличные оценки по всем предметам и легко поступил в Лейденский университет, после окончания которого некоторое время работал преподавателем. В 1875 г. он защитил докторскую диссертацию, посвященную применению теории электромагнетизма Максвелла для объяснения отражения и преломления световых волн. С 1878 по 1913 г. занимал должность профессора Лейденского университета, а с 1913 г. – директора физического кабинета Естественнонаучного музея в Гарлеме.