KnigaRead.com/
KnigaRead.com » Разная литература » Прочее » Фрэнсис Эшкрофт - Искра жизни. Электричество в теле человека

Фрэнсис Эшкрофт - Искра жизни. Электричество в теле человека

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Фрэнсис Эшкрофт, "Искра жизни. Электричество в теле человека" бесплатно, без регистрации.
Перейти на страницу:

Электрические устройства могут использоваться не только для лишения жизни, обездвиживания, пыток и принуждения, они могут применяться и во благо. Иногда, как, например, в случае электросудорожной терапии, их воздействие на человека неоднозначно. Однако электрическая аппаратура постоянно совершенствуется. Если понять характер электрической активности клетки или ткани, то можно обеспечить искусственное стимулирование, которое в точности повторит нормальный импульс и будет способно заменить или скорректировать дефектный сигнал. Кардиостимуляторы позволили тысячам людей вести нормальный образ жизни, а имплантируемые дефибрилляторы помогли еще сотням людей.

Дистанционный контроль мозга человека, возможность заставлять его вести себя определенным образом — все это из области ночных кошмаров, ну и, может быть, мечтаний Пентагона. Тем не менее нет ничего невозможного в контроле поведения другого существа путем стимулирования нужных частей мозга. Хосе Мануэль Родригес Дельгадо[42] был настолько уверен в этой идее, что в 1963 г. вышел на арене для корриды в Кордове навстречу разъяренному быку. Когда бык приблизился к нему, Дельгадо не отступил, а спокойно нажал на кнопку пульта дистанционного управления, который послал сигнал в приемник, связанный с имплантированным в мозг животного электродом. Электрическое стимулирование хвостатого ядра заставило быка остановиться: он застыл всего в паре метров от ученого.

Аналогичным образом стимулирование мозга плодовой мушки электрическим током или путем фотоактивирования светочувствительных ионных каналов может влиять на ее поведение: как было показано в главе 11, это может заставить самку вести себя как самец. Прямое стимулирование электричеством мозга человека способно давать не менее сильные эффекты. Хирурги при удалении опухолей мозга или ткани, инициирующей эпилептические припадки, иногда используют слабый ток, чтобы проверить, не является ли ткань, которую предстоит удалить, жизненно важной для больного. Такое стимулирование может вызывать воспоминания, ощущения и даже чувство наслаждения или страха. Ток правильной силы, приложенный к правильному участку, может оказывать сильное лечебное действие. В некоторых случаях эффект настолько благоприятен, что электроды навсегда оставляют вживленными в мозг больного.

Болезнь Паркинсона — тяжелая патология, при которой у больных развиваются тремор, ригидность мышц и затруднения при ходьбе и речи. Тремор бывает настолько сильным, что у некоторых руки ходят ходуном. Глубокое стимулирование мозга широко применяется в настоящее время для снятия тремора, который не устраняется лекарствами. Электрическому стимулированию подвергают определенные группы нервных клеток, находящихся в глубине мозга, обычно в области так называемого субталамического ядра, которое участвует в управлении двигательной активностью. Используемое для этого устройство сходно по принципу действия с кардиостимулятором. В мозг больного имплантируют электроды, которые соединяют с помощью изолированных проводов с небольшим прибором, находящимся вне головы. В черепе просверливают маленькое отверстие, и через него в мозг вводят электрод. Операция проводится под местной анестезией, и пациент во время нее находится в сознании. Он активно помогает хирургу определить, правильно ли размещен электрод, сообщая о своих ощущениях при включении стимулятора и воздействии электрических импульсов на мозг. После установки электрода в нужное положение, стимулятор размером со спичечную коробку зашивают под кожу в районе ключицы. Стимулятор подает в мозг импульсы обычно с частотой 150 раз в секунду.

Глубокое стимулирование мозга подавляет активность субталамического ядра. Почему именно это происходит, остается спорным вопросом. По одной из гипотез стимулируются тормозящие нейроны, которые выключают чрезмерно активные нервные клетки, по другой — прерываются патологические ритмы мозга. Так или иначе, метод работает и очень эффективно. Больные с неконтролируемой дрожью всего тела приходят в норму сразу же, как только включается устройство. Майкл Холман, журналист из газеты Financial Times, описывает это так: «Проще ничего и быть не могло. Врач, обследовавший меня, нажал на кнопку и отключил работавший от батарейки стимулятор, который был имплантирован в мою грудную клетку. За считаные секунды тремор возобновился и стал усиливаться. Через пару минут меня безнадежно трясло. Еще одно прикосновение к кнопке, и тремора как ни бывало». Искусственное ухо

Электроэнергия уже многие годы используется для питания слуховых аппаратов, которые представляют собой простые усилители, повышающие громкость звука. Однако если чувствительные клетки уха человека повреждены, то он все равно не слышит, каким бы громким ни был звук. Нормальные волосковые клетки в улитке внутреннего уха воспринимают звуковые сигналы и преобразуют их в электрические импульсы, которые поступают в мозг по слуховому нерву. Если у глухого человека сохранилась хотя бы часть слухового нерва, то можно, минуя поврежденные волосковые клетки, стимулировать этот нерв напрямую. Именно это и делают кохлеарные имплантаты.

На сегодняшний день они имеют как внутренние, так и внешние компоненты, первые имплантируют под кожу головы, а вторые носят за ухом. Внешнее устройство размером примерно с небольшой слуховой аппарат состоит из микрофона, речевого процессора и передатчика. Микрофон воспринимает окружающие звуки и преобразует их в электрические сигналы, речевой процессор отделяет фоновый шум, а передатчик посылает сигналы в приемник, установленный недалеко от него, но внутри тела. Приемник передает электрические сигналы к группе крошечных электродов, которые идут вдоль различных участков слухового нерва. Электроды вводят в одну из заполненных жидкостью камер улитки хирургическим путем так, чтобы они располагались достаточно близко к волокнам слухового нерва и обеспечивали их внешнее стимулирование.

Волосковые клетки улитки распределены вдоль нее в соответствии с тонами (частотами), к которым они чувствительны. Те, что реагируют на высокие звуки, находятся в одном конце, а те, что реагируют на низкие звуки, — на другом, во многом подобно клавишам рояля. Мозг различает высоту тона потому, что разные ветви слухового нерва связаны с волосковыми клетками, реагирующими на разные частоты. Если какую-либо ветвь нерва стимулировать искусственно, то мозг будет воспринимать сигнал как ноту определенной высоты. Количество электродов в кохлеарных имплантатах бывает разным, в современных устройствах оно колеблется от 16 до 24. Чем их больше, тем шире диапазон частот, которые человек может слышать. Именно поэтому существующие устройства не могут соперничать с настоящим ухом, которое имеет более 3000 внутренних волосковых клеток и позволяет нам слушать музыкальные композиции.

В настоящее время кохлеарные имплантаты вживляют только совершенно глухим людям, у которых повреждены волосковые клетки. Наилучший результат они дают у взрослых, потерявших слух, и у маленьких детей, родившихся глухими. Существует критический период, когда человек обретает способность говорить, и очень важно, чтобы дети получали кохлеарные имплантаты именно в это время — обычно в возрасте от двух до шести лет. Использование таких имплантатов пока еще очень молодое направление, и существующие устройства не могут восстановить нормальный слух в полной мере: британский политик Джек Эшли как-то заметил, что они звучат словно «хриплый далек[43] с ларингитом». Требуется время и тренировка, чтобы научиться понимать звуки, которые становятся слышными с помощью такого устройства. Особенно трудно воспринимать тональные языки вроде китайского, где важно различать тон. Тем не менее многие люди, которые когда-то были совершенно глухими, теперь могут слышать и даже пользоваться телефоном. Понимание речи на фоне шума, например в заполненном ресторане или баре, остается, однако, проблематичным.

Кохлеарные имплантаты помогают только в том случае, если сохранились хотя бы некоторые волокна слухового нерва, что бывает не всегда у совершенно глухих людей. Чтобы преодолеть эту проблему, были сконструированы электроды для имплантации непосредственно в слуховые центры головного мозга. Хотя это работает еще хуже, чем кохлеарные имплантаты, само направление перспективно и дает совершенно глухим людям надежду обрести хотя бы грубое восприятие звуков. Правда, не все глухие проявляют интерес к таким устройствам. Они смотрят на свой недостаток как на данность и предпочитают полагаться на язык жестов, позволяющий им легко общаться друг с другом. Искусственная рука

Каждое утро Кристиан Кандлбауэр встает, завтракает, забирается в автомобиль и едет на работу. Вроде бы ничего необычного, если бы не одно обстоятельство — Кристиан лишился обеих рук в 17 лет во время несчастного случая. Теперь у него два протеза: один обычный, а другой управляемый мозгом. Нерв, который когда-то управлял потерянными руками, хирургическим путем вывели в грудную клетку, а его разные ветви имплантировали в разные группы мышц. Со временем новые нервные окончания срослись с грудными мышцами так, что теперь, когда Кристиан хочет пошевелить рукой, мозг посылает сигнал в нерв, который возбуждает грудные мышцы. Ничтожно малые электрические импульсы в мышцах поступают в усилитель, расположенный на поверхности грудной клетки, и преобразуются в движения искусственной руки. Протезы, управляемые импульсами мозга, все еще находятся в стадии разработки, и Кристиан — один из первых, кто опробовал их.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*