KnigaRead.com/
KnigaRead.com » Разная литература » Прочее » Алекс Беллос - Красота в квадрате

Алекс Беллос - Красота в квадрате

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Алекс Беллос, "Красота в квадрате" бесплатно, без регистрации.
Перейти на страницу:

Анри Пуанкаре чаще всего вспоминают в связи со сформулированной им в 1904 году и известной под названием «гипотеза Пуанкаре» гипотезой о топологических свойствах сферы. (Она слишком сложна для того, чтобы объяснить ее на доступном для понимания языке одним или даже несколькими предложениями.) Почти целое столетие эта гипотеза была одной из самых знаменитых нерешенных задач в математике, и только в 2002 году 36-летний россиянин разместил ее доказательство в одном из интернет-архивов. К тому времени, когда другие математики проверили правильность его расчетов, Григорий Перельман прекратил заниматься математикой. Он стал затворником, жил с матерью в квартире на окраине Петербурга — и вернул к жизни стереотип эксцентричного отшельника. В 2006 году все математическое сообщество было потрясено отказом Перельмана от Филдсовской премии под предлогом, что он не нуждается ни в каком признании, кроме одного: чтобы люди поняли, что его доказательство правильно. Этот поступок повлек за собой самую горячую полемику за все время, прошедшее с момента учреждения премии в 1936 году. В 2010 году Математический институт Клэя присудил Перельману премию в размере 1 миллион долларов за доказательство гипотезы Пуанкаре, но он отказался и от нее. Невостребованная награда Перельмана, стеклянная табличка на каменной основе, стоит сейчас на полке в кабинете Виллани, а призовые деньги направлены на финансирование новой кафедры в Институте Анри Пуанкаре.

«Перельман — настоящая загадка», — сказал Виллани. Я спросил, читал ли он доказательство Перельмана. «Приложив немного усилий, я смог в нем разобраться. Это не так уж далеко от моей области, — ответил Виллани. — Многие считают, что, если в математике есть доказательство, мы должны быть готовы сразу же определить его правильность или ошибочнось. Но это совсем не так». По словам Виллани, для того чтобы понять ход мыслей Перельмана, требуется много времени.

Перельман — один из шести россиян — лауреатов Филдсовской премии начиная с 1994 года. За этот период в России было больше ее обладателей, чем в любой другой стране. Франция занимает второе место — у нее пять обладателей премии. Однако если включить в этот список бельгийца, который работал во Франции, а также вьетнамца и русского, имеющих французское гражданство, то Франция выйдет в лидеры по количеству математиков, получивших Филдсовскую премию, — 8 из 18. Кроме того, все французские обладатели премии работают в Париже. В этом городе больше профессиональных математиков, чем в любом другом. «Около тысячи [математиков] живут здесь, — сказал Виллани. — Потрясающая цифра!» Одна из причин того, почему во Франции столько лауреатов премии, — первоклассная система образования: все эти математики, кроме одного, учились в престижнейшем учебном заведении — Высшей нормальной школе, в которой на курс математики принимают всего 41 или 42 студентов в год. Однако история также играет в этом свою роль. Великая (или последняя) теорема Ферма, декартова система координат, треугольник Паскаля, преобразования Фурье — вся история математики испещрена именами французов, являющихся предметом национальной гордости Франции. Но ни один из обладателей Филдсовской премии не стал в своей стране такой публичной фигурой, как Седрик Виллани во Франции.

Недавно Виллани вступил в дискуссию с несколькими физиками по поводу Николя Карно (1796–1832), который первым сформулировал теоретические основы работы паровой машины. «У Карно ни на секунду не возникало желания построить такую машину. Ему не было до этого дела! — воскликнул Виллани. — Да, он был французом! Англичане стремятся построить машину, а французы хотят понять ее на теоретическом уровне. И так было всегда!» Так будет и впредь. Да здравствуют различия!

Интегрирование — это раздел исчисления, связанный с расчетом площади, поэтому, когда в 1876 году шотландский инженер Джеймс Томас изобрел устройство для ее измерения, он назвал его «интегратором». Это устройство было усовершенствованной версией планиметра — научного инструмента XIX столетия, которым чаще всего пользовались геодезисты для вычисления площадей фрагментов карты, имеющих неправильную форму. Планиметр состоял из механизма с колесом и диском, закрепленного на рычаге таким образом, чтобы после перемещения иглы по периметру измеряемой области механизм давал точное значение ее площади.

Томпсон показал схему интегратора младшему брату Уильяму, впоследствии ставшему лордом Кельвином, и тот сразу же разглядел потенциал устройства в плане механизации вычислений. Поскольку интегрирование — одна из составляющих дифференциального уравнения, Кельвин понял, что интеграторы можно использовать и в качестве одного из элементов устройства для решения дифференциальных уравнений. Кельвин стразу же применил интеграторы в своем «гармоническом анализаторе приливов» — изобретенном им аппарате для расчета времени наступления приливов.

В 1927 году на основании идей Кельвина по применению ряда интеграторов для решения дифференциальных уравнений Вэнивар Буш из Массачусетского технологического института сконструировал так называемый дифференциальный анализатор — вычислительный прибор, предназначенный исключительно для решения дифференциальных уравнений. Это огромное устройство весом 100 тонн состояло из восьми механических интеграторов, установленных на платформе величиной с комнату, и стало первым, способным делать сложные математические расчеты, опередив первые цифровые электронные компьютеры на целое десятилетие.

Дифференциальный анализатор представлял собой аналоговое вычислительное устройство, поскольку его механические составляющие были функционально подобны взаимодействиям в той физической системе, которую он моделировал. Устройство Буша служило основой многих аналоговых компьютеров вплоть до 70-х годов ХХ столетия, когда в результате наступления цифровой эры и аналоговые вычислительные устройства, и логарифмические линейки вышли из употребления.

Мы с вами уже знаем, что исчисление было рабочим инструментом Ньютона при открытии законов движения и всемирного тяготения. Математические нововведения позволили ему создать логически связную совокупность формул, описывающих зависимость между силами, действующими на объект, и его положением, скоростью и ускорением. В книге «Математические начала натуральной философии» Ньютон ввел новую концепцию — центростремительной силы, «под действием которой тела притягиваются, или продвигаются, или любым другим способом стремятся к определенной точке как к центру». Именно эта сила заставляет тела двигаться по кругу. Представьте себе теннисный мяч, привязанный к шнуру. Возьмите конец шнура в руку, поднимите над головой и начинайте вращать мяч так, чтобы он описывал в воздухе круги. Шнур тянет мяч к центру под действием центростремительной силы.

Центростремительная сила рассчитывается по формуле , где m — это масса тела, v — его скорость, r — радиус окружности (см. рисунок ниже). В каждый момент времени скорость мяча перпендикулярна шнуру, а центростремительная сила воздействует на шнур, притягивая его к центру. В «Началах» Ньютон уделял особое внимание центростремительным силам, воздействующим на планеты. Однако в XVIII веке эта сила вызывала большую обеспокоенность у транспортных инженеров.

Теннисный мяч движется по кругу под действием центростремительной силы

На первых железнодорожных линиях использовались только прямые и круговые участки пути. Такое сочетание создавало определенные проблемы, поскольку, когда поезд переходил с прямого на круговой участок, пассажиры испытывали неприятные ощущения — их начинало резко клонить в сторону. На поезд, движущийся по прямому участку с постоянной скоростью, не воздействуют никакие силы. Но, когда он переходит на круговой участок, он подвергается действию центростремительной силы. Так как она направлена внутрь, это и вызывало у пассажиров ощущение, будто их выталкивает наружу. (На самом деле пассажиров наружу ничто не выталкивает. Они переходят с прямой траектории на круговую, а поскольку система ориентиров в вагоне остается прежней, возникает иллюзия, будто какая-то сила выталкивает их наружу.)

«После полувека железнодорожных перевозок мы все еще используем на путях только прямые линии и круги, — писал американский инженер Эллис Холбрук в 1880 году. — Создается впечатление, что железнодорожники принимают такое варварское сочетание как должное, даже не задавая вопросов по поводу того, что здесь не так» [11]. Холбрук нашел следующее решение: делать между прямым и круговым участками переходную кривую, на которой поезд, двигающийся с постоянной скоростью, находится под воздействием центростремительной силы, линейно увеличивающейся на протяжении определенного периода. Поскольку центростремительная сила рассчитывается по формуле , где m и v — это константы, для того чтобы эта сила росла по линейному закону, переходная кривая должна иметь кривизну .

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*