KnigaRead.com/
KnigaRead.com » Разная литература » Прочее » Алекс Беллос - Красота в квадрате

Алекс Беллос - Красота в квадрате

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Алекс Беллос, "Красота в квадрате" бесплатно, без регистрации.
Перейти на страницу:

Концепция бесконечно малых величин позволила разработать метод определения градиентов, а также найти способ вычисления площадей. Мы уже видели, как Архимед рассчитывал площадь, ограниченную параболой и прямой, суммируя площадь треугольников все меньшего размера, а также как математики эпохи Возрождения усовершенствовали эту методику, разделив площадь на бесконечно малые сегменты. Метод флюксий Ньютона делает возможным определение площади под кривой посредством разделения этой площади на бесконечное количество бесконечно малых вертикальных полос.

Например, зная уравнение кривой С, изображенной на рисунке ниже, с помощью исчисления мы можем вывести уравнение заштрихованной области А между началом координат и точкой х на горизонтальной оси.

Следовательно, при наличии той или иной кривой исчисление предоставляет нам две возможности: вывести уравнение ее градиента или уравнение площади под ней. Но вот что интересно: эти две процедуры носят взаимно обратный характер! Градиент и площадь — это, по сути, одно и то же явление, рассматриваемое под разными углами. Такой поворот сюжета достоин мультсериала «Скуби-Ду»: в последнем акте этой математической драмы оказывается, что два разных персонажа на самом деле представляют собой один и тот же объект. Этот результат, получивший название «основная теорема исчисления», стал одним из самых неожиданных открытий XVII столетия.

Если не вдаваться в детали, эта теорема гласит, что если площадь под кривой С равна А, то градиент кривой А равен С. Чтобы было понятнее, вспомните о том, что кривые, площади и градиенты записываются в виде уравнений. С — это кривая, которая также имеет свое уравнение. С помощью исчисления мы можем вывести уравнение А для площади, лежащей под этой кривой. Основная теорема исчисления гласит, что производная (или градиент) уравнения А равна С.

Давайте посмотрим, как это работает, когда С — это прямая y = 2x, представленная на рисунке ниже. Площадь треугольника равна произведению половины основания на высоту. (Мы могли бы вывести эту формулу с помощью бесконечно малых величин, но нам не нужно этого делать, поскольку она уже известна.) Следовательно, площадь А под линией от 0 до х равна х/2 × 2x, или x2, что дает уравнение площади под линией А = x2. Но это же уравнение описывает и кривую на рисунке справа — параболу. Вспомните размещенный немного выше график, на котором показано, как определение градиента кривой дает возможность перейти от кривой к прямой линии. На рисунках ниже показано, как вычисление площади под кривой позволяет перейти от прямой к параболе. Следовательно, градиент и площадь — это две стороны одной медали.

Вычисление площади под прямой y = 2x и ее отображение в виде кривой

Исчисление позволяло Ньютону взять уравнение, определяющее положение объекта, и вывести из него другое уравнение, описывающее мгновенное значение скорости этого объекта. Кроме того, благодаря исчислению он мог взять уравнение мгновенного значения скорости объекта и вывести из него другое уравнение, описывающее его положение. Исчисление предоставляло в распоряжение Ньютона те математические инструменты, с помощью которых он разработал законы динамики. Ньютон называл переменные своих уравнений флюентами, а градиенты — флюксиями и обозначал их буквами и с точками сверху.

Когда после двух лет пребывания в Линкольншире Ньютон вернулся в Кембридж, он никому не рассказал о методе флюксий, о чем впоследствии очень сожалел. На континенте над созданием аналогичной системы работал Готфрид Лейбниц, немец по рождению, являющийся человеком вне границ — юристом, дипломатом, алхимиком, инженером и философом. Кроме того, еще и математиком, который придавал большое значение системе обозначений. Символы, введенные им для своей системы, были более понятны, чем символы Ньютона, — именно их мы и используем до сих пор.

Лейбниц ввел обозначения dx и dy для бесконечно малой разности между значениями x и y. Градиент, который представляет собой отношение одной бесконечно малой разности к другой, он записывал как dx/dy. Поскольку Лейбниц употреблял слово difference («разность»), вычисление градиента было обозначено термином «дифференцирование». Кроме того, Лейбниц ввел напоминающий вытянутую букву s символ ∫ для обозначения расчета площади. S — это сокращение от слова summa («сумма»), поскольку, как мы уже видели, площадь рассчитывается как сумма бесконечно большого количества бесконечно малых величин. По рекомендации своего друга Иоганна Бернулли Лейбниц назвал этот метод calculus integralis — интегральное исчисление, а расчет площади стал известен как интегрирование. Преимущество такого длинного (и поддающегося расширению) символа состоит в том, что рядом с ним можно указать значения на горизонтальной оси, ограничивающие рассчитываемую площадь. В таком случае площадь А, показанная на рисунке с кривой С, записывается так:

что читается как «интеграл по С от 0 до x». Введенный Лейбницем символ ∫ — самый величественный символ в математике, напоминающий форму резонаторного отверстия в виолончели или скрипке.

Более двух десятилетий Лейбниц и Ньютон вели уважительную дружескую переписку по поводу бесконечно малых величин [8]. Когда Лейбниц первым опубликовал детали своей системы исчисления, все предположили, что он изобрел ее самостоятельно. Но в 1699 году, через несколько лет после того, как Ньютон обнародовал свой метод флюксий, молодой швейцарский математик, живший в Англии, обвинил Лейбница в краже идей Ньютона. Через пять лет появилась реакция на это заявление: в журнале Acta Eruditorum вышла статья (по всей вероятности, написанная Лейбницем) с предположением о том, что это Ньютон совершил плагиат. Такие перепалки между британским и континентальным научным сообществом становились все ожесточеннее, и эта вражда заполнила все последующие годы жизни Лейбница и Ньютона. Споры по поводу приоритета были в то время далеко не редкостью, но ни в один из них не были вовлечены ученые такого масштаба, и ни один не стал столь гневным и продолжительным. Эта вражда не закончилась даже после их смерти. Великобритания, где из чувства национальной гордости использовали флюксии Ньютона вместо дифференциалов, оказалась изолированной от европейских научных достижений на протяжении лучшей части столетия. Только когда англичане приняли систему обозначений Лейбница и перешли, как писал Огастес де Морган, «от эпохи флюксий с точечными обозначениями к эпохе исчисления с его деизмами», Британия восстановила свой статус в математике [9].

В 1891 году немецкая компания Bahlsen начала выпускать прямоугольное масляное печенье с зубчатыми краями под названием Leibniz — по имени самого известного выходца из Ганновера. По случайному совпадению в тот же год один булочник из Филадельфии сделал свое первое пирожное Fig Newton — рулет с инжирным кремом, названный в честь города Ньютона в штате Массачусетс. Так что в наши дни спор «Ньютон против Лейбница» протекает разве что во время чаепития.

Как мы уже знаем, исчисление состоит из двух процедур: дифференцирование (вычисление градиента) и интегрирование (вычисление площади). Если говорить в общих чертах, то градиент — это скорость изменения одной переменной величины по отношению к другой, а площадь — мера того, в каком количестве накапливается одна переменная величина в зависимости от другой. Таким образом, исчисление предоставляет ученым возможность моделировать поведение величин, меняющихся в зависимости друг от друга. Этот удивительный инструмент позволяет объяснить физический мир, поскольку во Вселенной все, от крохотных атомов до самых больших галактик, находится в постоянном движении.

Зная зависимость между двумя переменными величинами, мы можем описать их с помощью уравнения, воспользовавшись символами для обозначения дифференцирования и интегрирования. Уравнение с переменными х и у, в котором присутствует выражение dx/dy, называется простейшим дифференциальным уравнением. Если в уравнении присутствует больше двух переменных, скажем х, у и t, скорость изменения записывается как ∂x/∂y или ∂x/∂t. Это уравнение называется дифференциальным уравнением с частными производными, поскольку такие его члены, как ∂x/∂y, говорят нам о том, как одна переменная меняется в зависимости от другой, но не от всех переменных. Дифференциальные уравнения с частными производными наиболее распространены в прикладной математике, поскольку позволяют ученым делать прогнозы. Зная, как две величины меняются с течением времени, мы можем предсказать их состояние в любой момент в будущем. Уравнения Максвелла, объясняющие поведение магнитных и электрических полей; уравнение Шредингера, лежащее в основе квантовой механики; уравнения поля Эйнштейна, представляющие собой основу Общей теории относительности, — все это дифференциальные уравнения с частными производными.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*