KnigaRead.com/
KnigaRead.com » Разная литература » Прочее » Ричард Фейнман - 1. Современная наука о природе, законы механики

Ричард Фейнман - 1. Современная наука о природе, законы механики

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Ричард Фейнман, "1. Современная наука о природе, законы механики" бесплатно, без регистрации.
Перейти на страницу:

§ 2. Скорость

Хотя мы примерно представляем себе, что такое «скорость», однако здесь есть одна очень важная тонкость. Заметьте, что древние греки так и не смогли до конца разобраться в проблеме скорости. Тонкость, о которой идет речь, дает себя знать, ког­да пытаешься точно определить, что же подразумевается под понятием «скорость». Этот вопрос был камнем преткновения для древних греков, и потребовалось открытие новой области математики, помимо геометрии и алгебры, которые были извест­ны и грекам, и арабам, и вавилонянам. Попробуйте-ка с помо­щью одной лишь алгебры решить следующую задачу. Воздуш­ный шар надувается таким образом, что его объем увеличивает­ся со скоростью 100 см3/сек. С какой скоростью увеличивается его радиус, когда объем шара достигает 1000 см3? Задачи такого рода были неразрешимы для древних греков. Кроме того, их сбивали с толку многочисленные «парадоксы». Вот один из них, придуманный Зеноном, который хорошо показывает, насколько была сложна в то время проблема скорости движения. «Пред­положим,— говорит он, — что Ахиллес бегает в десять раз быстрее черепахи. Но тем не менее он никогда не перегонит ее. Действительно, пусть в начале состязания черепаха находилась в 100 метрах впереди Ахиллеса. Тогда ко времени, когда Ахиллес пробежит эти 100 метров, черепаха окажется в 10 метрах впереди него. Пробежав и эти 10 метров, Ахиллес увидит черепаху в 1 метре впереди себя. За то время, пока он пробежит этот метр черепаха пройдет 10 сантиметров и так далее ... до бесконечности. Следовательно, в любой момент черепаха будет впереди Ахиллеса, и он никогда не сможет перегнать ее». В чем здесь ошибка? Конечный интервал времени можно разделить на бесконечное число частей точно так же, как и конечный отрезок длины, если последовательно делить его пополам. Но бесконечное число этапов до того места, где Ахиллес поравняется с черепахой, вовсе не означает бесконечное количество времени. Этот пример хорошо показывает, с какими трудностями приходилось сталкиваться в проблеме определения скорости.

Чтобы еще яснее представить себе эти трудности, вспомним старую шутку, которую вы наверняка слышали. Вы помните, что автомобиль, о котором мы говорили в начале этой лекции, был остановлен полицейским. Он подходит к машине и говорит: «Мадам (ибо за рулем была женщина), Вы нарушили правила уличного движения. Вы ехали со скоростью 90 километров в час». Женщина отвечает: «Простите, это невозможно. Как я могла делать 90 километров в час, если я еду всего лишь 7 ми­нут!» Как бы вы ответили на месте полицейского? Конечно, если вы действительно настоящий полицейский, то такими хитростя­ми вас не запутаешь. Вы бы твердо сказали: «Мадам, оправды­ваться будете перед судьей!» Но предположим, что у вас нет та­кого выхода. Вы хотите честно доказать нарушительнице ее вину и пытаетесь объяснить ей, что означает скорость 90 км/час. Как это сделать? Вы скажете: «Я имел в виду, мадам, что если бы вы продолжали ехать таким те образом, то через час Вы бы про­ехали 90 километров». «Да, но я ведь затормозила и остановила машину,— может ответить она,— так что теперь-то я уж никак не могла бы проехать 90 километров в час».

Аналогичная проблема возникает и в случае падающего шарика. Предположим, что мы хотим определить его скорость через 3 сек, если бы он двигался таким же образом. Но что озна­чает «двигался таким же образом»? Сохранял бы ускорение, двигался быстрее, что ли? Конечно, нет! Сохранял бы ту же са­мую скорость. Но ведь это как раз то, что мы пытаемся опреде­лить! Если бы шарик продолжал двигаться «таким же образом», то он падал бы так же, как падает. Так что нужно придумать что-то лучшее для определения скорости. Что же все-таки долж­но сохраняться? Нарушительница могла бы вам еще ответить и так: «Если бы я продолжала ехать, как ехала, еще час, то на­летела бы на стену в конце улицы!» В общем, как видите, поли­цейский оказался бы в очень трудном положении, пытаясь объяснить, что он имел в виду.

Многие физики думают, что единственным определением любого понятия является способ его измерения. Но тогда при объяснении вы должны прибегнуть к прибору, измеряющему скорость. «Смотрите,— скажете вы в этом случае, — ваш спи­дометр показывает 60». «Мой спидометр сломан и давно не ра­ботает»,— ответит она. Но достаточно ли этого, чтобы пове­рить, что машина не двигалась? Мы полагаем, что как-то нужно было бы определять скорость и без помощи спидометра. Только при этих условиях можно сказать, что спидометр не работает, что он сломан. Это было бы абсурдным, если бы скорость не имела смысла без спидометра. Очевидно, что понятие «скорость» не зависит от спидометра. Спидометр нужен только для того, чтобы измерять ее. Давайте посмотрим, нельзя ли придумать луч­шее определение понятия «скорость». Вы скажете: «Разумеется, мадам, если бы вы ехали таким же образом в течение часа, то налетели бы на стену, но за 1 секунду вы бы проехали 25 метров, так что вы делали 25 метров в секунду, и если бы продолжали ехать таким же образом, то в следующую секунду опять проехали бы 25 метров, а стена стоит гораздо дальше». «Но правила запрещают делать 90 километров в час, а не 25 мет­ров в секунду». «Да ведь это то же самое, что и 90 километ­ров в час»,— ответите вы. А если это то же самое, то к чему тог­да все длинные разговоры о 25 м/сек? В действительности же падающий шар не может двигаться одинаковым образом даже 1 сек, так как он постоянно ускоряется, и, следовательно, нуж­но определить скорость как-то точнее.

Но теперь мы, кажется, находимся на правильном пути, ко­торый приводит нас вот к чему. Если бы машина продолжала двигаться таким же образом следующую тысячную долю часа, то она прошла бы тысячную долю 90 км. Другими словами, нет никакой необходимости ехать целый час с той же быстротой, достаточно какого-то момента. Это означает, что за какой-то момент времени машина проходит такое же расстояние, как я идущая с постоянной скоростью 90 км/час. Наши рассуждении о 25 м/сек, возможно, и правильные; мы отмечаем, сколько ма­шина прошла в следующую секунду, и если получается расстоя­ние 25 м, то это означает, что скорость достигает 90 км/час.

Другими словами, можно определить скорость следующим об­разом. Определяем расстояние, которое было пройдено за очень малый отрезок времени, и, разделив его на этот отрезок времени, получаем скорость. Однако этот отрезок должен быть как мож­но меньше, и чем меньше, тем лучше, потому что в этот период могут произойти снова изменения. Смешно, например, для па­дающего тела в качестве такого отрезка принять час. Принять в качестве отрезка секунду, может быть, удобно для автомобиля, так как за секунду его скорость изменяется не слишком силь­но, но этот отрезок велик для падающего тела. Таким образом, чтобы вычислить скорость более точно, нужно брать все меньшие и меньшие интервалы времени. Если на миллионную долю се­кунды мы разделим расстояние, которое было пройдено в течение этого времени, то получим расстояние в секунду, т.е. как раз то, что мы понимаем под скоростью. Именно это нужно было сказать нашей нарушительнице, т. е. дать то определение; скорости, которое мы и будем использовать.

Такое определение содержит некую новую идею, которая была недоступна грекам в ее общей форме.

Она заключается в том, чтобы малые расстояния разделить на соответствующие малые отрезки времени и посмотреть, что произойдет с частным, если отрезок времени брать все меньше и меньше (иными словами, брать предел отношения пройденно­го расстояния к интервалу времени при неограниченном уменьшении последнего). Впервые эта идея была высказана незави­симо Ньютоном и Лейбницем и явилась основой новой области математики — дифференциального исчисления. Оно возникло в связи с описанием движения, и первым его приложением был ответ на вопрос: «Что означает 90 км/час?»

Попытаемся теперь точнее определить скорость. Пусть за некоторое малое время e машина или какое-то другое тело про­шли малое расстояние х; тогда скорость v определяется как

v=x/e,

причем точность будет тем больше, чем меньше e. Математики записывают это следующим образом:

(8.3)

т. е. скорость есть предел отношения х/eпри e, стремящемся к нулю. Для нашей машины-нарушительницы невозможно точно вычислить скорость, так как таблица неполная. Ее положение известно нам только через интервалы 1 мин. Приближенно, конечно, можно сказать, что в течение седьмой минуты, например, она шла со средней скоростью 90 км/час, однако о ее ско­рости в конце шестой минуты ничего сказать невозможно. Мо­жет быть, она ускорялась и скорость с 40 км/час в начале шестой минуты возросла до 90 км/час в конце ее, а может быть, она дви­галась иначе. Мы не знаем этого точно, так как у нас нет деталь­ной записи ее движения между шестой и седьмой минутами. Только когда таблица будет пополнена бесконечным числом данных, из нее можно будет действительно вычислить скорость. Если, однако, нам известна полная математическая формула, как, например, в случае падающего тела [уравнение (8.1)], то можно подсчитать скорость. Ведь по формуле можно найти положение тела в любой момент времени.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*