KnigaRead.com/

Виктор Финкель - Портрет трещины

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн "Виктор Финкель - Портрет трещины". Жанр: Техническая литература издательство неизвестно, год неизвестен.
Перейти на страницу:

бы монолитное крыло самолета, а не систему трещин. Но что же делать, коль скоро разрушение началось? Для предотвращения беды, видимо, все средства хороши. И мы в этой ситуации мало чем отличаемся от неизвестного генерала, победная реляция которого звучала так: «У нас не оказалось белого флага и мы вынуждены были победить».

НЕПРАВИЛЬНОСТИ ДЕЙСТВУЮТ ПРАВИЛЬНО

И зло в тесноте сражений Побеждается горшим злом…

М. Волошин

Все методы и средства, которые мы рассматривали до сих пор как инструменты торможения разрушения, объединены одним – они макроскопичны. Кроме того, по существу мы совершали насилие над металлом, останавливая в нем трещину упругими волнами, температурными и упругими полями, наконец, другими трещинами. Единственным исключением были композитные материалы. Мы «дали им право высказаться», чтобы услышать «мнение» самого материала. Но, конечно же, оно было неполным, потому что обычные металлы не приняли участия в дискуссии. Между тем их «взгляды» далеко небезразличны нам. Ведь у кристаллов есть свои возможности торможения трещин. Свои резервы. И немалые. Что же может противопоставить кристаллический материал трещине? Свою прочность? Да, но это слишком собирательный и потому ничего не выражающий термин. Свою пластичность? Безусловно! – но уж слишком это общо.

Подлинное, «искреннее самовыражение» металла в его отношении к разрушению проявляется в тех реальных барьерах, которые он может выставить на пути разрушения. Образно говоря, каких солдат, какие полки и дивизии способен противопоставить металл наступающей колонне вражеских трещин? Этим войскам самообороны металла являются шеренги и скопления его дефектов. Состоит эта армия из солдат – дислокаций. Именно они, эти воинские группировки металла, должны принять на себя первый удар зарождающейся, а потом растущей трещины.

Итак, внутренние дефекты материала – вот основная

надежда его на прочность. Обратимся к королеве дефектов – дислокации. Мы помним, что существуют дислокации-сестры – краевые и винтовые. Опыт показал, что отдельная краевая дислокация и трещина совершенно безразличны друг к другу.

Они взаимно холодны и тогда, когда трещина пересекает краевую дислокацию. Совсем по-иному складываются отношения разрушения с винтовой сестрой. Дело в том, что эта дислокация закручивает кристалл в спираль. Значит, каждая кристаллографическая плоскость превращается тоже в спираль. Не избегает этой судьбы и плоскость разрушения. А там, где есть спираль, появляется и порог, соединяющий части плоскости с различным уровнем. Как говорят физики, при взаимодействии трещины с винтовой дислокацией возникают ступеньки. Но это – лишняя поверхность, а следовательно, дополнительная поверхностная энергия. Для образования ступеньки трещина вынуждена заимствовать упругую энергию из «банка», председателем и учредителем которого является разрушающая сила. Значит, преодоление трещиной винтовой дислокации требует дополни-

тельных усилий, хотя и очень малых. Если на пути разбойницы-трещины встречается одна винтовая дислокация, то она, конечно, не сможет оказать достойного сопротивления. По-иному обстоит дело, если дислокаций легионы. Тогда они превращают парадное шествие трещины в судорожные скачки с ухаба на ухаб. Для преодоления сопротивления маленьких, но многочисленных противников трещина вынуждена тысячи раз обращаться в «банк» за субсидиями. Между тем возможности «банка» ограничены. И запасы валюты – энергии – у него скудеют. При достаточно большом числе винтовых дислокаций рано или поздно наступит момент, когда банк обанкротится и трещина, в мгновенье ока, потеряв свою ретивость, остановится – она ведь всегда живет в кредит.

А много ли для этого нужно дислокаций? К сожалению, неисчислимо много – миллиарды, миллиарды и миллиарды. Далеко не всегда такое количество их имеется в распоряжении металла. Поэтому слишком надеяться на этот вариант торможения трещин в металле не следует, хотя свою положительную роль он, безусловно играет.

У нас могло сложиться впечатление о «трусости» краевой дислокации – ведь она «уклоняется» от боя с трещиной. Да, но только потому, что мы потребовали от нее сражаться определенным видом оружия, скажем, на рапирах. Между тем она сильна в другом: ее коронный номер – «классическая борьба». Каждая краевая

дислокация создает в окружающем ее пространстве упругие поля сжатия и растяжения. Первого трещина боится, второе любит. Поэтому, если краевая дислокация повернется к трещине своим щитом – полем сжимающих напряжений – трещина вынуждена будет приостановиться. Однако, так же как ее сестра – винтовая дислокация, краевая с таким хищником как трещина в одиночку не справится. Совсем по-другому протекает «раунд» с трещиной, когда краевые дислокации объединяются, противопоставляя опасности свою коллективную силу. Тогда они способны создавать обширную линию обороны, на всем протяжении которой существует мощное поле сжимающих напряжений. Обойти его трещине не удается, она вынуждена взаимодействовать с ним, серьезно притормаживая. Помните А. Межирова?

Встали в ряд. Поперек дорога Перерезана. – Тормози.

Какие же объединения дислокаций имеются в виду? Прежде всего, дислокационные границы.

Хорошо известно, что простейшая такая граница – это вертикальный ряд краевых дислокаций. Расстояние между дислокациями, стоящими в затылок друг к другу, тем меньше, чем на большие углы развернуты кристаллы по обе стороны границы. Сплотившие свой ряд дислокации напоминают строй римских воинов – черепаху. Сплошной массив из щитов с частоколом копий встречает враг. Примерно так же окружают себя дисло-

нации стеной полей сжатия, слившись в один ковер. Да еще в два ряда. На расстояниях в 1000 мкм образуется поле внутренних напряжений, возникших при кристаллизации различно ориентированных зерен, а вблизи самих дислокаций – собственное упругое поле, простирающееся всего на несколько межатомных расстояний.

Даже такая однородная граница между субзернами в монокристаллическом материале способна влиять на медленную трещину. Но задержать быструю она не может. Зато в поликристаллической стали зерна развернуты столь капитально, что иногда представляют собой множество подобных рядов. Если угол, составляемый соседними зернами, достигает 30°, такая граница непобедима, пробиться через нее трещина не в состоянии.

Параллельные ряды «римских черепах» останавливают трещину, идущую с любой скоростью и питающуюся любой упругой энергией. Если граница имеет винтовую природу (граница скручивания) и «сооружена» из винтовых дислокаций, то она еще прочнее. Понятно: ведь помимо того, что работают упругие поля дислокационных стенок, любой прорыв сопровождается возникновением ступеней, а это – дополнительные потери энергии. Поэтому уже 20-градусная винтовая граница – барьер совершенно непреодолимый для разрушения.

Вот как обстоят дела, когда мы проводим опыты в лаборатории с единственной границей между двумя кристаллами. Физики называют такую пару бикристаллом. Но в повседневной практике все сложнее – ведь сталь в конечном итоге неизбежно разрушается трещиной. А реальная сталь – это десятки и сотни тысяч, кристаллов. Каким же образом происходит «разгром» детали? Как

…Сквозь леса из кристаллов он держит свой путь напролом?..

(В. Шефнер)

Прежде всего разориентированы эти тысячи кристаллов по-разному. Огромное их количество едва развернуто по отношению друг к другу. Многие – на большие углы. Для такого опытного разрушителя, как трещина, возникают неограниченные возможности. Допустим, в этот момент ее противник – малоугловая граница. Прорыв происходит относительно легко, а раскол выходит на широкоугловую. Удар, еще атака… Прорыв не удал-

ся. Но трещина находится под непрестанным давлением внешних напряжений. Если она медленная, то у нее есть время для «артподготовки». Она начинает деформировать металл в своей вершине, насыщает его дислокациями, меняет его структуры, разворачивает кристаллиты перед собой и в конечном итоге прорывается через изувеченный материал. Если времени у нее нет, она поступает по-другому. Быстро разворачивается и идет к другой границе кристаллита, более удачно ориентированной. Мы уже говорили о «беспринципности» трещины – огромной ее маневренности и способности легко менять свою траекторию. Именно это она и делает. Своеобразный метод проб и ошибок. Быстро «накапливая» опыт, который по выражению восточного мудреца чаще всего – дитя ошибки, трещина находит уязвимое место в обороне поликристалла и прорывает одну его границу за другой. Конечно, трещина не только не существо, но даже и не вещество; поэтому говорить о каком-то гуманоидном опыте можно лишь в риторическом смысле. Физически это выглядит примерно так. Встретившись с барьером и не пробив его, трещина вынуждена развернуться и перейти на ближайшую по углу плоскость спайности кристалла. Происходит что-то вроде того, как если бы вы слишком сильно нажали на перо. Оно бы изогнулось, потеряв устойчивость. Так же изгибается и трещина, но на вполне определенный угол. Теперь уже она давит на другой участок границы. Иногда в удачном для нее месте произойдет прорыв. В неудачном – очередной разворот. Трещина как бы прощупывает различные участки границы, пока не находит самый уязвимый. В конечном итоге статистика (муза итогов!) оказывается иногда на стороне торжествующего разрушения. Уж очень разно-прочен стальной массив. Много в нем малоугловых лазеек для трещины.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*