Виктор Финкель - Портрет трещины
Коллектив трещин, конечно же, ослабляет тело. Разумеется, было бы лучше без трещин, чем с ними. Но коль скоро отсутствие их в металле, к сожалению, исключено, посмотрим, нет ли каких-либо возможностей расположить их так, чтобы обращенное друг против друга их взаимное зло было как-то погашено. Не окажется ли внутреннее взаимодействие в такой системе трещин маленькой компенсацией за большое несчастье? Вопрос сводится таким образом к следующему: больше ли ослабляет тело коллектив трещин, нежели одиночная трещина? Не может ли оказаться, что система из многих
трещин окажется «скованной» и неспособной быстро разрушить конструкцию. Наконец, не «заинтересована» ли прочность в том, чтобы уже если иметь врагов, так много? Тогда они помешают друг другу расправиться с ней.
По-видимому, надежды эти совсем не случайны. Когда-то академик Я. Б. Зельдович предсказал, что при шахматном расположении трещин должно наблюдаться их взаимное упрочение.
Теоретики-механики взялись за решение этой задачи и в последние 20 лет получили очень интересные и наглядные результаты. В. В. Панасюк и Л. Т. Бережниц-кий нашли, что выстроенные в хвост друг за другом трещины ослабляют тело, понижают его прочность. Поэтому такие системы крайне опасны и их надо всячески избегать. Заключение, полученное для случая неподвижных трещин, в еще большей степени справедливо для трещин растущих потому, что такие разрезы очень легко объединяются.
Совсем другое дело – системы из параллельно расположенных трещин. Их рассчитывали В. 3. Партон и В. В. Панасюк со своими учениками. Прежде всего оказалось, что определенное взаимное расположение трещин приводит к стабилизации, то есть устойчивости каждой из них в отдельности и системы в целом. И связано это с интенсивным взаимодействием упругих полей трещин друг с другом. Поэтому при малых расстояниях между трещинами, когда они теснейшим образом слиты, эффект упрочнения оказывается наибольшим. При этом прочность тела с системой трещин, безусловно, выше, чем с одиночной трещиной.
Интересно, а подтвердилось ли предположение академика Я. Б. Зельдовича? И да, и нет. Действительно, система параллельных трещин предпочтительнее, чем одиночная. Однако, что касается шахматного порядка их расположения, как наиболее оптимального, то здесь появилось «но»… Выяснилось, что этот порядок не обеспечивает максимальных прочностей. Гораздо прочнее металл, в котором трещины выстроены параллельными рядами и располагаются строго одна над другой. Вероятно, таких рядов может быть много, но они расположены не в шахматном порядке, а скорее как солдаты, выстроенные в каре.
Ну, а если в системе трещин расстояние между ними
велико? Тогда взаимодействие трещин мало, а прочность такого объединения еще ниже, чем у одиночной трещины. Поэтому такое скопление, конечно, нежелательно.
Подобные соображения помогли ученым ФРГ разработать прочный керамический материал для изготовления турбинных лопаток. Основой этой керамики являются оксиды циркония и оксиды алюминия. После прессовки их спекают при 1500 °С. В результате последующего быстрого охлаждения возникают чрезвычайно мелкие трещины диаметром в миллионные доли сантиметра. Эти-то микротрещины впоследствии и гасят напряжения от ударных нагрузок и препятствуют зарождению больших трещин в керамике.
НАДЕЖДА -МОЙ КОМПАС ЗЕМНОЙ
Свет – и ничего другого…
Б, ОкуджаваДорогой читатель! В первой половине книги мы посеяли семена нашего понимания природы разрушения. Теперь, когда они взошли и уборка в разгаре, нам нельзя потерять ни одного зернышка, ни одного колоска надежды на усмирение трещины. Ведь это не просто наша прихоть, а насущная потребность мира машин, механизмов и конструкций, от которых зависит наше существование, а порой и наша жизнь.
Крупицу оптимизма можно отыскать и в таком, казалось бы, безысходном процессе разрушения, каким является ветвление. Множественный распад трещин превращает некогда монолитный металл в груду осколков и не оставляет никакой надежды «выцарапать» из этого безжизненного хаоса что-то полезное. Однако если ветвящаяся трещина одна, а в металле она часто бывает одиночной, то тогда-Тогда нам нужно вспомнить, что после каждого эпизода ветвления трещина моментально теряет свою скорость, а иной раз и вообще останавливается.
Нельзя ли использовать это обстоятельство и влиять на ветвление каждый раз, когда это нужно?
Но прежде всего, когда это выгодно? Тормозить трещину таким образом в закаленной стали, например, явно нецелесообразно. Затормозившись после ветвления, трещина моментально разгонится вновь в таком мате-
риале. Уж очень хрупок металл и велики ускорения разрушения из-за больших внутренних напряжений. Совершенно другое дело обычная незакаленная сталь. Или сталь, прошедшая после закалки отпуск. В ней внутренние напряжения относительно малы. Вязкость металла велика и энергия, необходимая для разгона трещины, на один-два порядка выше, чем в закаленной стали. Поэтому, если в такой стали осуществить насильственное ветвление, то потерявшая скорость трещина не сможет восполнить запас своей кинетической энергии за счет внутренних напряжений металла. С другой стороны, трещине понадобится много энергии для разгона, которую она вынуждена будет черпать из резервуара упруго нагружающей системы. А для этого нужно немало времени.
По существу мы использовали известный безжалостный принцип самбо: падающего – толкни, нападающего – тяни. Для остановки быстрой трещины мы заставили ее размножиться и создать вместо одного разрушения целый куст. Конечно же, при этом мы заплатили невероятную цену: чтобы остановить надвигающуюся катастрофу, мы заложили основы для двух новых в будущем. Но это в будущем. А сегодня… Сегодня в нашем арсенале методов торможения появился еще один.
Этот метод, каким бы спорным и сложным он не оказался впоследствии, открыл еще одно окошко в весенний мир надежды, хотя дело обстоит далеко не просто.
Быстрая трещина представляет собой систему неустойчивую. Ее склонность постоянно «рыскать» из стороны в сторону, ее «беспринципность» – безынерцион-ность – обостряются по мере возрастания скорости распространения. При режимах, близких к ветвлению, эти процессы делают трещину «легко ранимой», уязвимой по отношению к любому динамическому воздействию извне. Совсем не обязательно, чтобы оно было большим по мощности и силе. Ведь когда система неустойчива, нетрудно вывести ее из равновесия. Для возникновения ветвления достаточно даже слабое воздействие.
Поэтому проблемы ветвления связаны не с тем, будет оно тормозить трещину или нет. Это бесспорно. Главное заключается в том, как это сделать. Простейший путь – взаимодействие трещины с импульсом сжатия.
Когда-то в античной трагедии развязку, которую трудно
было решить обычными традиционно человеческими средствами, драматурги осуществляли методом, известным под названием беиз ех тасЫпа («Бог из машины»). Буквально это означало вмешательство кого-нибудь из богов, прибывших на сцену с помощью механического приспособления. В роли такого Оеиз ех таспта способен в нашем случае выступить упругий импульс сжатия, направленный нормально или под углом к трещине. В этом единоборстве импульс всегда побеждает, потому что нестабильной трещине многого и не надо и «укус пчелы» – импульс – почти с неизбежностью изменяет траекторию трещины и ведет к мгновенному ветвлению.
Таким или каким-либо другим импульсным методом нетрудно нарушить стабильность быстро и катастрофически растущей трещины, заставив ее тем самым разветвиться и потерять скорость. Проведенный несколько раз последовательно такой процесс на расстоянии в несколько миллиметров и сантиметров позволил бы остановить любую трещину.
Ну что ж – остановили мы разрушение. Но в металле – целая метелка трещин.
Что же ждет эту конструкцию в будущем? Ведь ее «жизнь» – искусственно созданное нами существование, продленный эпизод. Это жизнь, в которую разрушение проникло настолько глубоко, что надеяться на нее нельзя – конструкция «едва дышит».
К счастью, в этом случае мы располагаем одним весомым аргументом, позволяющим утверждать, что все-таки шансы на «спасение» есть и немалые. Дело в том, что для разгона трещины надо затратить энергию на пластическую деформацию в ее вершине. Оказалось, что при малых скоростях пластичность велика, но с ростом скорости она быстро падает (примерно обратно пропорционально квадрату скорости). Поэтому, если трещину посредством ветвления притормозить или остановить, усилия для ее дальнейшего продвижения будут нелинейно велики. Тем более что в одном районе уже будет не одна трещина, а две-три. Для их роста теперь понадобится энергия, во много раз превышающая ту, при которой росла одиночная трещина до ветвления. Такой энергии в системе может не оказаться, и тело с метелкой трещин окажется достаточно прочным, чтобы выдержать некоторое время до создания условий, пригодных для ремонта конструкции. Конечно, мы предпочли