KnigaRead.com/

К. Чайников - Общее устройство судов

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн К. Чайников, "Общее устройство судов" бесплатно, без регистрации.
Перейти на страницу:

Наклонения судна возможны по разным причинам: от действия набегающих волн, из-за несимметричного затопления отсеков при пробоине, от перемещения грузов, давления ветра, из-за приема или расходования грузов и пр.

Наклонение судна в поперечной плоскости называют креном , а в продольной плоскости – дифферентом ; углы, образующиеся при этом, обозначают соответственно O и y,

Различают начальную остойчивость , т. е. остойчивость при малых углах крена, при которых кромка верхней палубы начинает входить в воду (но не более 15° для высокобортных надводных судов), и остойчивость при больших наклонениях .

Представим себе, что под действием внешних сил судно получило крен на угол 9 (рис. 14). Вследствие этого объем подводной части судна сохранил свою величину, но изменил форму; по правому борту в воду вошел дополнительный объем, а по левому борту равновеликий ему объем вышел из воды. Центр величины переместился из первоначального положения С в сторону крена судна, в центр тяжести нового объема – точку С1. При наклонном положении судна сила тяжести Р, приложенная в точке G, и сила поддержания D, приложенная в точке С, оставаясь перпендикулярными к новой ватерлинии В1Л1 образуют пару сил с плечом GK, являющимся перпендикуляром, опущенным из точки G на направление сил поддержания.

Если продолжить направление силы поддержания из точки С1 до пересечения с ее первоначальным направлением из точки С, то на малых углах крена, соответствующих условиям начальной остойчивости, эти два направления пересекутся в точке М, называемой поперечным метацентром .

Расстояние между метацентром и центром величины МС называется поперечным мета центрическим радиусом , обозначаемым р, а расстояние между точкой М и центром тяжести судна G – поперечной метацентрической высотой h0 . На основании данных рис. 14 можно составить тождество

h0 = p + zc – zg.


В прямоугольном треугольнике GMR угол у вершины М будет равен углу 0. По его гипотенузе и противолежащему углу можно определить катет GK, являющийся плечо м восстанавливающей судно пары GK=h0 sin 8, а восстанавливающий момент будет равен Мвосст = DGK. Подставляя значения плеча, получим выражение

Мвосст = Dh0 * sin 0,


Рис. 14. Силы, действующие при крене судна.


Взаимное положение точек М и G позволяет установить следующий признак, характеризующий поперечную остойчивость: если метацентр расположен выше центра тяжести, то восстанавливающий момент положителен и стремится вернуть судно в исходное положение, т. е. при накренении судно будет остойчиво, наоборот, если точка М находится ниже точки G, то при отрицательном значении h0 момент отрицателен и будет стремиться увеличивать крен, т. е. в этом случае судно неостойчиво. Возможен случай, когда точки М и G совпадают, силы Р и D действуют по одной вертикальной прямой, пары сил не возникает, и восстанавливающий момент равен нулю: тогда судно надо считать неостойчивым, так как оно не стремится вернуться в первоначальное положение равновесия (рис. 15).

Метацентрическую высоту для характерных случаев нагрузки вычисляют в процессе проектирования судна, и она служит ме- рой остойчивости. Значение поперечной метацентрической высоты для основных типов судов лежит в пределах 0,5-1,2 м и лишь у ледоколов достигает 4,0 м.

Для увеличения поперечной остойчивости судна необходимо снижать его центр тяжести. Это чрезвычайно важный фактор всегда надо помнить, особенно при эксплуатации судна, и вести строгий учет за расходованием топлива и воды, хранящихся в междудонных цистернах.

Продольная метацентрическая высота H0 рассчитывается аналогично поперечной, но так как ее величина, выражается в десятках или даже в сотнях метров, всегда весьма велика – от одной до полутора длин судна, то после проверочного расчета продольную остойчивость судна практически не рассчитывают, ее величина интересна только в случае определения осадки судна носом или кормой при продольных перемещениях грузов или при затоплении отсеков по длине судна.


Рис. 15. Поперечная остойчивость судна в зависимости от расположения грузов: а – положительная остойчивость; б – положение равновесия – судно неостойчиво; в – отрицательная остойчивость.


Вопросам остойчивости судна придается исключительно важное значение, и поэтому обычно, кроме всех теоретических вычислений, после постройки судна проверяют истинное положение его центра тяжести путем опытного кренования, т. е. поперечного наклонения судна путем перемещения груза определенного веса, называемого кренбалластом .

Все полученные ранее выводы, как уже упоминалось, практически справедливы при начальной остойчивости, т. е. при крене на малые углы.

При расчетах поперечной остойчивости на больших углах крена (продольные наклонения на практике не бывают большими) определяют переменные положения центра величины, метацентра, поперечного метацентрического радиуса и плеча восстанавливающего момента GK для различных углов крена судна. Такой расчет делают начиная от прямого положения через 5- 10° до того угла крена, когда восстанавливающее плечо превращается в нуль и судно приобретает отрицательную остойчивость.

По данным этого расчета для наглядного представления об остойчивости судна на больших углах крена строят диаграмму статической остойчивости (ее также называют диаграммой Рида), показывающую зависимость плеча статической остойчивости (GK) или восстанавливающего момента Мвосcт от угла крена 8 (рис. 16). На этой диаграмме по оси абсцисс откладывают углы крена, а по оси ординат – значение восстанавливающих моментов или плечи восстанавливающей пары, так как при равнообъемных наклонениях, при которых водоизмещение судна D остается постоянным, восстанавливающие моменты пропорциональны плечам остойчивости.


Рис. 16. Диаграмма статической остойчивости.


Диаграмму статической остойчивости строят для каждого характерного случая нагрузки судна, и она следующим образом характеризует остойчивость судна:

1) на всех углах, при которых кривая расположена над осью абсцисс, восстанавливающие плечи и моменты имеют положительное значение, и судно имеет положительную остойчивость. При тех углах крена, когда кривая расположена под осью абсцисс, судно будет неостойчивым;

2) максимум диаграммы определяет предельный угол крена 0 мах и предельный кренящий момент при статическом наклонении судна;

3) угол 8, при котором нисходящая ветвь кривой пересекает ось абсцисс, называется углом заката диаграммы . При этом угле крена восстанавливающее плечо становится равным нулю;

4) если на оси абсцисс отложить угол, равный 1 радиану (57,3°), и из этой точки восставить перпендикуляр до пересечения с касательной, проведенной к кривой из начала координат, то этот перпендикуляр в масштабе диаграммы будет равен начальной метацентрической высоте h0.

Большое влияние на остойчивость оказывают подвижные, т. е. незакрепленные, а также жидкие и сыпучие грузы, имеющие свободную (открытую) поверхность. При наклонении судна эти грузы начинают перемещаться в сторону крена и, как следствие, центр тяжести всего судна уже не будет находиться в неподвижной точке G, а начнет тоже перемещаться в ту же сторону, вызывая уменьшение плеча поперечной остойчивости, что равносильно уменьшению метацентрической высоты со всеми вытекающими из этого последствиями. Для предотвращения таких случаев все грузы на судах должны быть закреплены, а жидкие или сыпучие должны быть погружены в емкости, исключающие всякое переливание или пересыпание грузов.

При медленном действии сил, создающих кренящий момент, судно, наклоняясь, остановится тогда, когда кренящий и восстанавливающий моменты сравняются. При внезапном действии внешних сил, таких, как порыв ветра, натяжение буксира на борт, качка, бортовой залп из орудий и т. п., судно, наклоняясь, приобретает угловую скорость и даже с прекращением действия этих сил будет продолжать крениться по инерции на дополнительный угол до тех пор, пока не израсходуется вся его кинетическая энергия (живая сила) вращательного движения судна и его угловая скорость не превратится в нуль. Такое наклонение судна под действием внезапно приложенных сил называется динамическим наклонением . Если при статическом кренящем моменте судно плавает, имея лишь некоторый крен 0СТ, то в случае динамического действия того же кренящего момента оно может опрокинуться.

При анализе динамической остойчивости для каждого водоизмещения судна строят диаграммы динамической остойчивости, ординаты которых представляют в определенном масштабе площади, образованные кривой моментов статической остойчивости для соответствующих углов крена, т. е. выражают работу восстанавливающей пары при наклонении судна на угол 0, выраженный в радианах. При вращательном движении, как известно, работа равна произведению момента на угол поворота, выраженный в радианах,

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*